BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 26333715)

  • 1. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine.
    Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C
    J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer.
    Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD
    Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
    Shen L; Wu H; Diep D; Yamaguchi S; D'Alessio AC; Fung HL; Zhang K; Zhang Y
    Cell; 2013 Apr; 153(3):692-706. PubMed ID: 23602152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TET-mediated active DNA demethylation: mechanism, function and beyond.
    Wu X; Zhang Y
    Nat Rev Genet; 2017 Sep; 18(9):517-534. PubMed ID: 28555658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
    Ito S; Shen L; Dai Q; Wu SC; Collins LB; Swenberg JA; He C; Zhang Y
    Science; 2011 Sep; 333(6047):1300-3. PubMed ID: 21778364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea.
    Chavez L; Huang Y; Luong K; Agarwal S; Iyer LM; Pastor WA; Hench VK; Frazier-Bowers SA; Korol E; Liu S; Tahiliani M; Wang Y; Clark TA; Korlach J; Pukkila PJ; Aravind L; Rao A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5149-58. PubMed ID: 25406324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution.
    Shen L; Zhang Y
    Curr Opin Cell Biol; 2013 Jun; 25(3):289-96. PubMed ID: 23498661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming.
    Song CX; Szulwach KE; Dai Q; Fu Y; Mao SQ; Lin L; Street C; Li Y; Poidevin M; Wu H; Gao J; Liu P; Li L; Xu GL; Jin P; He C
    Cell; 2013 Apr; 153(3):678-91. PubMed ID: 23602153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y
    Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic acid modifications with epigenetic significance.
    Fu Y; He C
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):516-24. PubMed ID: 23092881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of 5-Carboxylcytosine Distribution Using DNA Immunoprecipitation.
    Abakir A; Alenezi F; Ruzov A
    Methods Mol Biol; 2021; 2198():311-319. PubMed ID: 32822041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
    Wu H; Zhang Y
    Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development.
    Inoue A; Shen L; Dai Q; He C; Zhang Y
    Cell Res; 2011 Dec; 21(12):1670-6. PubMed ID: 22124233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.