These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves. Fuchs HL; Gerbi GP; Hunter EJ; Christman AJ; Diez FJ J Exp Biol; 2015 May; 218(Pt 9):1419-32. PubMed ID: 25788721 [TBL] [Abstract][Full Text] [Related]
4. Active downward propulsion by oyster larvae in turbulence. Fuchs HL; Hunter EJ; Schmitt EL; Guazzo RA J Exp Biol; 2013 Apr; 216(Pt 8):1458-69. PubMed ID: 23264488 [TBL] [Abstract][Full Text] [Related]
5. Turbulence induces metabolically costly behaviors and inhibits food capture in oyster larvae, causing net energy loss. Fuchs HL; Specht JA; Adams DK; Christman AJ J Exp Biol; 2017 Oct; 220(Pt 19):3419-3431. PubMed ID: 28978637 [TBL] [Abstract][Full Text] [Related]
6. Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. Fuchs HL; Gerbi GP; Hunter EJ; Christman AJ Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7532-E7540. PubMed ID: 30037993 [TBL] [Abstract][Full Text] [Related]
7. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence. Wheeler JD; Chan KY; Anderson EJ; Mullineaux LS J Exp Biol; 2016 May; 219(Pt 9):1303-10. PubMed ID: 27208032 [TBL] [Abstract][Full Text] [Related]
8. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow. Clay TW; Grünbaum D J Exp Biol; 2010 Apr; 213(Pt 8):1281-92. PubMed ID: 20348340 [TBL] [Abstract][Full Text] [Related]
9. Responding to the signal and the noise: behavior of planktonic gastropod larvae in turbulence. DiBenedetto MH; Helfrich KR; Pires A; Anderson EJ; Mullineaux LS J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 35048972 [TBL] [Abstract][Full Text] [Related]
10. Response of the copepod Elmi D; Webster DR; Fields DM J Exp Biol; 2021 Feb; 224(Pt 3):. PubMed ID: 33443042 [TBL] [Abstract][Full Text] [Related]
11. Prey fish escape by sensing the bow wave of a predator. Stewart WJ; Nair A; Jiang H; McHenry MJ J Exp Biol; 2014 Dec; 217(Pt 24):4328-36. PubMed ID: 25520384 [TBL] [Abstract][Full Text] [Related]
12. Are larvae of demersal fishes plankton or nekton? Leis JM Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426 [TBL] [Abstract][Full Text] [Related]
13. Oyster larvae settle in response to habitat-associated underwater sounds. Lillis A; Eggleston DB; Bohnenstiehl DR PLoS One; 2013; 8(10):e79337. PubMed ID: 24205381 [TBL] [Abstract][Full Text] [Related]
14. Assessment of swimming behavior of the Pacific oyster D-larvae (Crassostrea gigas) following exposure to model pollutants. Gamain P; Roméro-Ramirez A; Gonzalez P; Mazzella N; Gourves PY; Compan C; Morin B; Cachot J Environ Sci Pollut Res Int; 2020 Feb; 27(4):3675-3685. PubMed ID: 30706262 [TBL] [Abstract][Full Text] [Related]
16. A feeding model of oyster larvae (Crassostrea angulata). Qiu T; Liu Y; Zheng J; Zhang T; Qi J Physiol Behav; 2015 Aug; 147():169-74. PubMed ID: 25921946 [TBL] [Abstract][Full Text] [Related]
17. Regulatory Role of Sugars on the Settlement Inducing Activity of a Conspecific Cue in Pacific Oyster Sedanza MG; Kim HJ; Seposo X; Yoshida A; Yamaguchi K; Satuito CG Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806943 [TBL] [Abstract][Full Text] [Related]
18. Orientation behavior in fish larvae: a missing piece to Hjort's critical period hypothesis. Staaterman E; Paris CB; Helgers J J Theor Biol; 2012 Jul; 304():188-96. PubMed ID: 22465113 [TBL] [Abstract][Full Text] [Related]
19. Body dynamics and hydrodynamics of swimming fish larvae: a computational study. Li G; Müller UK; van Leeuwen JL; Liu H J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489 [TBL] [Abstract][Full Text] [Related]
20. Are fish less responsive to a flow stimulus when swimming? Feitl KE; Ngo V; McHenry MJ J Exp Biol; 2010 Sep; 213(Pt 18):3131-7. PubMed ID: 20802114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]