These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 26334035)
1. Design, analysis and control of a novel tendon-driven magnetic resonance-guided robotic system for minimally invasive breast surgery. Jiang S; Lou J; Yang Z; Dai J; Yu Y Proc Inst Mech Eng H; 2015 Sep; 229(9):652-69. PubMed ID: 26334035 [TBL] [Abstract][Full Text] [Related]
2. Modelling and control of a five-degrees-of-freedom pneumatically actuated magnetic resonance-compatible robot. Jiang S; Feng W; Lou J; Yang Z; Liu J; Yang J Int J Med Robot; 2014 Jun; 10(2):170-9. PubMed ID: 23893561 [TBL] [Abstract][Full Text] [Related]
3. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery. Qi F; Ju F; Bai D; Wang Y; Chen B Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671 [TBL] [Abstract][Full Text] [Related]
4. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. He C; Wang S; Sang H; Li J; Zhang L Int J Med Robot; 2014 Sep; 10(3):314-24. PubMed ID: 24030887 [TBL] [Abstract][Full Text] [Related]
5. Control design and implementation of a novel master-slave surgery robot system, MicroHand A. Sang H; Wang S; Li J; He C; Zhang L; Wang X Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498 [TBL] [Abstract][Full Text] [Related]
6. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery. Sang H; Yang C; Liu F; Yun J; Jin G Int J Med Robot; 2016 Dec; 12(4):670-679. PubMed ID: 27921372 [TBL] [Abstract][Full Text] [Related]
7. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators. Xu W; Chen J; Lau HYK; Ren H Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806 [TBL] [Abstract][Full Text] [Related]
8. Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. Larson BT; Erdman AG; Tsekos NV; Yacoub E; Tsekos PV; Koutlas IG J Biomech Eng; 2004 Aug; 126(4):458-65. PubMed ID: 15543863 [TBL] [Abstract][Full Text] [Related]
9. Design and implementation of a new cable-driven robot for MRI-guided breast biopsy. Liu W; Yang Z; Jiang S; Feng D; Zhang D Int J Med Robot; 2020 Apr; 16(2):e2063. PubMed ID: 31830358 [TBL] [Abstract][Full Text] [Related]
10. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery. Qi F; Ju F; Bai D; Wang Y; Chen B Int J Med Robot; 2019 Aug; 15(4):e2007. PubMed ID: 31050135 [TBL] [Abstract][Full Text] [Related]
11. Concept design of robotic modules for needlescopic surgery. Sen S; Harada K; Hewitt Z; Susilo E; Kobayashi E; Sakuma I Minim Invasive Ther Allied Technol; 2017 Aug; 26(4):232-239. PubMed ID: 28635406 [TBL] [Abstract][Full Text] [Related]
12. Robotic natural orifice transluminal endoscopic surgery (R-NOTES): literature review and prototype system. Azizi Koutenaei B; Wilson E; Monfaredi R; Peters C; Kronreif G; Cleary K Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):18-23. PubMed ID: 25539996 [TBL] [Abstract][Full Text] [Related]
13. A master manipulator with a remote-center-of-motion kinematic structure for a minimally invasive robotic surgical system. Lee H; Cheon B; Hwang M; Kang D; Kwon DS Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29027359 [TBL] [Abstract][Full Text] [Related]
14. Lesion positioning method of a CT-guided surgical robotic system for minimally invasive percutaneous lung. Zhang TF; Fu Z; Wang Y; Shi WY; Chen GB; Fei J Int J Med Robot; 2020 Apr; 16(2):e2044. PubMed ID: 31674135 [TBL] [Abstract][Full Text] [Related]
15. Design and validation a minimally invasive robotic surgical instrument with decoupled pose and multi-DOF. Yang Y; Zhang H; Kong K; Su H; Li J J Robot Surg; 2024 Aug; 18(1):312. PubMed ID: 39110315 [TBL] [Abstract][Full Text] [Related]
16. Towards autonomous motion control in minimally invasive robotic surgery. Prendergast JM; Rentschler ME Expert Rev Med Devices; 2016 Aug; 13(8):741-8. PubMed ID: 27376789 [TBL] [Abstract][Full Text] [Related]
17. Control of a hybrid robotic system for computer-assisted interventions in dynamic environments. Smoljkic G; Borghesan G; Devreker A; Poorten EV; Rosa B; De Praetere H; De Schutter J; Reynaerts D; Sloten JV Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1371-83. PubMed ID: 26662203 [TBL] [Abstract][Full Text] [Related]
18. A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot. Tully S; Choset H IEEE Trans Biomed Eng; 2016 Feb; 63(2):392-402. PubMed ID: 26241966 [TBL] [Abstract][Full Text] [Related]
19. A new telesurgical platform--preliminary clinical results. Stark M; Pomati S; D'Ambrosio A; Giraudi F; Gidaro S Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):31-6. PubMed ID: 25627435 [TBL] [Abstract][Full Text] [Related]
20. Body-Mounted MR-Conditional Robot for Minimally Invasive Liver Intervention. Huang Z; Gunderman AL; Wilcox SE; Sengupta S; Shah J; Lu A; Woodrum D; Chen Y Ann Biomed Eng; 2024 Aug; 52(8):2065-2075. PubMed ID: 38634953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]