These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26334276)

  • 1. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).
    Kang SW; Fragala J; Banerjee D
    Sensors (Basel); 2015 Aug; 15(9):21785-806. PubMed ID: 26334276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Electro-Thermo-Mechanical Behavior Analysis of Au/Si₃N₄ Bimorph Microcantilevers for Static Mode Sensing.
    Kang SW; Fragala J; Kim SH; Banerjee D
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental setup for characterization of self-actuated microcantilevers with piezoresistive readout for chemical recognition of volatile substances.
    Filenko D; Ivanov T; Volland BE; Ivanova K; Rangelow IW; Nikolov N; Gotszalk T; Mielczarski J
    Rev Sci Instrum; 2008 Sep; 79(9):094101. PubMed ID: 19044432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Nose for Recognition of Volatile Vapor Mixtures Using a Nanopore-Enhanced Opto-Calorimetric Spectroscopy.
    Chae I; Lee D; Kim S; Thundat T
    Anal Chem; 2015 Jul; 87(14):7125-32. PubMed ID: 26111073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide receptor-based selective dinitrotoluene detection using a microcantilever sensor.
    Hwang KS; Lee MH; Lee J; Yeo WS; Lee JH; Kim KM; Kang JY; Kim TS
    Biosens Bioelectron; 2011 Dec; 30(1):249-54. PubMed ID: 22000759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis.
    Jahangir I; Koley G
    Sci Rep; 2016 Jul; 6():28735. PubMed ID: 27381318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standoff Mechanical Resonance Spectroscopy Based on Infrared-Sensitive Hydrogel Microcantilevers.
    Chae I; Khan MF; Song J; Kang T; Lee J; Thundat T
    Anal Chem; 2016 Oct; 88(19):9678-9684. PubMed ID: 27599117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of energetic materials on a microcantilever using surface reduction.
    Yi D; Senesac L; Thundat T
    Scanning; 2008; 30(2):208-12. PubMed ID: 18288710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption-desorption characteristics of explosive vapors investigated with microcantilevers.
    Muralidharan G; Wig A; Pinnaduwage LA; Hedden D; Thundat T; Lareau RT
    Ultramicroscopy; 2003; 97(1-4):433-9. PubMed ID: 12801699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct detection and speciation of trace explosives using a nanoporous multifunctional microcantilever.
    Lee D; Kim S; Jeon S; Thundat T
    Anal Chem; 2014 May; 86(10):5077-82. PubMed ID: 24766474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study on the thermal initiation of a confined explosive in 2-D geometry.
    Aydemir E; Ulas A
    J Hazard Mater; 2011 Feb; 186(1):396-400. PubMed ID: 21130568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A monolithic photonic microcantilever device for in situ monitoring of volatile compounds.
    Misiakos K; Raptis I; Gerardino A; Contopanagos H; Kitsara M
    Lab Chip; 2009 May; 9(9):1261-6. PubMed ID: 19370246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desorption characteristics of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors.
    Pinnaduwage LA; Thundat T; Gehl A; Wilson SD; Hedden DL; Lareau RT
    Ultramicroscopy; 2004 Aug; 100(3-4):211-6. PubMed ID: 15231312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips.
    Wang S; Shen R; Ye Y; Hu Y
    Nanotechnology; 2012 Nov; 23(43):435701. PubMed ID: 23059728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct real-time detection of vapors from explosive compounds.
    Ewing RG; Clowers BH; Atkinson DA
    Anal Chem; 2013 Nov; 85(22):10977-83. PubMed ID: 24090362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double side nanostructuring of microcantilever sensors with TiO
    Thomas G; Gerer G; Schlur L; Schnell F; Cottineau T; Keller V; Spitzer D
    Nanoscale; 2020 Jul; 12(25):13338-13345. PubMed ID: 32573578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explosive odor signature profiling: A review of recent advances in technical analysis and detection.
    Gallegos SF; Aviles-Rosa EO; DeChant MT; Hall NJ; Prada-Tiedemann PA
    Forensic Sci Int; 2023 Jun; 347():111652. PubMed ID: 37019070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.
    Tsai CH; Tsai CW; Chang HT; Liu SH; Tsai JC
    Sensors (Basel); 2015 Jun; 15(6):14745-56. PubMed ID: 26110409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of an Optically Heated MEMS-Based Micromechanical Bimaterial Sensor for Heat Capacitance Measurements of Single Biological Cells.
    Alodhayb A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface combustion microengines based on photocatalytic oxidations of hydrocarbons at room temperature.
    Su M; Dravid VP
    Nano Lett; 2005 Oct; 5(10):2023-8. PubMed ID: 16218731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.