These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26334279)

  • 1. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.
    Xiong J; Li C; Jia P; Chen X; Zhang W; Liu J; Xue C; Tan Q
    Sensors (Basel); 2015 Aug; 15(9):21844-56. PubMed ID: 26334279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high temperature capacitive pressure sensor based on alumina ceramic for in situ measurement at 600 °C.
    Tan Q; Li C; Xiong J; Jia P; Zhang W; Liu J; Xue C; Hong Y; Ren Z; Luo T
    Sensors (Basel); 2014 Jan; 14(2):2417-30. PubMed ID: 24487624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor.
    Li C; Sun B; Xue Y; Xiong J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase interrogation used for a wireless passive pressure sensor in an 800 °C high-temperature environment.
    Zhang H; Hong Y; Liang T; Zhang H; Tan Q; Xue C; Liu J; Zhang W; Xiong J
    Sensors (Basel); 2015 Jan; 15(2):2548-64. PubMed ID: 25690546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Passive Wireless Temperature Sensor for Harsh Environment Applications.
    Wang Y; Jia Y; Chen Q; Wang Y
    Sensors (Basel); 2008 Dec; 8(12):7982-7995. PubMed ID: 27873971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Ceramic Passive Wireless Temperature Sensor Realized by Tin-Doped Indium Oxide (ITO) Electrodes for Harsh Environment Applications.
    Varadharajan Idhaiam KS; Caswell JA; Pozo PD; Sabolsky K; Sierros KA; Reynolds DS; Sabolsky EM
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-optic Fabry-Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications.
    Liu J; Jia P; Zhang H; Tian X; Liang H; Hong Y; Liang T; Liu W; Xiong J
    Appl Opt; 2018 May; 57(15):4211-4215. PubMed ID: 29791395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.
    Qin L; Shen D; Wei T; Tan Q; Luo T; Zhou Z; Xiong J
    Sensors (Basel); 2015 Jul; 15(7):16729-39. PubMed ID: 26184207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.
    Liu J; Yuan Y; Ren Z; Tan Q; Xiong J
    Sensors (Basel); 2015 Sep; 15(9):22660-71. PubMed ID: 26370999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless High Temperature Sensing Chipless Tag Based on a Diamond Ring Resonator.
    Wang B; Li Y; Gu T; Wang K
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An LC Wireless Passive Pressure Sensor Based on Single-Crystal MgO MEMS Processing Technique for High Temperature Applications.
    Jia P; Liu J; Qian J; Ren Q; An G; Xiong J
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and Functionality of a Ceramic Resonant Pressure Sensor for Operation at Elevated Temperatures.
    Sadl M; Bradesko A; Belavic D; Bencan A; Malic B; Rojac T
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AlN-Based Ceramic Patch Antenna-Type Wireless Passive High-Temperature Sensor.
    Yan D; Yang Y; Hong Y; Liang T; Yao Z; Chen X; Xiong J
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Manufacturing of a Passive Pressure Sensor Based on LC Resonance.
    Zheng C; Li W; Li AL; Zhan Z; Wang LY; Sun DH
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless Passive LC Temperature and Strain Dual-Parameter Sensor.
    Wang Y; Tan Q; Zhang L; Lin B; Li M; Fan Z
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Metamaterial Inspired High-Temperature Microwave Sensor in Harsh Environments.
    Lu F; Tan Q; Ji Y; Guo Q; Guo Y; Xiong J
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An LC Passive Wireless Gas Sensor Based on PANI/CNT Composite.
    Shen S; Fan Z; Deng J; Guo X; Zhang L; Liu G; Tan Q; Xiong J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30201885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.
    Tan Q; Kang H; Xiong J; Qin L; Zhang W; Li C; Ding L; Zhang X; Yang M
    Sensors (Basel); 2013 Aug; 13(8):9896-908. PubMed ID: 23917261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave Backscatter-Based Wireless Temperature Sensor Fabricated by an Alumina-Backed Au Slot Radiation Patch.
    Lu F; Wang H; Guo Y; Tan Q; Zhang W; Xiong J
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.