These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 26334566)
1. Impact of obesity on accumulation of the toxic irinotecan metabolite, SN-38, in mice. Mallick P; Shah P; Gandhi A; Ghose R Life Sci; 2015 Oct; 139():132-8. PubMed ID: 26334566 [TBL] [Abstract][Full Text] [Related]
2. Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ando Y; Ueoka H; Sugiyama T; Ichiki M; Shimokata K; Hasegawa Y Ther Drug Monit; 2002 Feb; 24(1):111-6. PubMed ID: 11805731 [TBL] [Abstract][Full Text] [Related]
3. PLX038: a PEGylated prodrug of SN-38 independent of UGT1A1 activity. Fontaine SD; Santi AD; Reid R; Smith PC; Ashley GW; Santi DV Cancer Chemother Pharmacol; 2020 Jan; 85(1):225-229. PubMed ID: 31707444 [TBL] [Abstract][Full Text] [Related]
4. [Influence of genetic polymorphisms in UGT1A1, UGT1A7 and UGT1A9 on the pharmacokynetics of irinotecan, SN-38 and SN-38G]. Valenzuela Jiménez B; González Sales M; Escudero Ortiz V; Martínez Navarro E; Pérez Ruixo C; Rebollo Liceaga J; González Manzano R; Pérez Ruixo JJ Farm Hosp; 2013; 37(2):111-27. PubMed ID: 23789755 [TBL] [Abstract][Full Text] [Related]
5. Local enzymatic hydrolysis of an endogenously generated metabolite can enhance CPT-11 anticancer efficacy. Prijovich ZM; Chen KC; Roffler SR Mol Cancer Ther; 2009 Apr; 8(4):940-6. PubMed ID: 19372567 [TBL] [Abstract][Full Text] [Related]
6. The in vitro metabolism of irinotecan (CPT-11) by carboxylesterase and beta-glucuronidase in human colorectal tumours. Tobin P; Clarke S; Seale JP; Lee S; Solomon M; Aulds S; Crawford M; Gallagher J; Eyers T; Rivory L Br J Clin Pharmacol; 2006 Jul; 62(1):122-9. PubMed ID: 16842384 [TBL] [Abstract][Full Text] [Related]
7. Effects of green tea compounds on irinotecan metabolism. Mirkov S; Komoroski BJ; Ramírez J; Graber AY; Ratain MJ; Strom SC; Innocenti F Drug Metab Dispos; 2007 Feb; 35(2):228-33. PubMed ID: 17108060 [TBL] [Abstract][Full Text] [Related]
8. Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Gupta E; Wang X; Ramirez J; Ratain MJ Cancer Chemother Pharmacol; 1997; 39(5):440-4. PubMed ID: 9054958 [TBL] [Abstract][Full Text] [Related]
9. Factors involved in prolongation of the terminal disposition phase of SN-38: clinical and experimental studies. Kehrer DF; Yamamoto W; Verweij J; de Jonge MJ; de Bruijn P; Sparreboom A Clin Cancer Res; 2000 Sep; 6(9):3451-8. PubMed ID: 10999728 [TBL] [Abstract][Full Text] [Related]
11. Effect of UGT1A1, CYP3A and CES Activities on the Pharmacokinetics of Irinotecan and its Metabolites in Patients with UGT1A1 Gene Polymorphisms. Yokokawa A; Kaneko S; Endo S; Minowa Y; Ayukawa H; Hirano R; Nagashima F; Naruge D; Okano N; Kobayashi T; Kawai K; Furuse J; Furuta T; Shibasaki H Eur J Drug Metab Pharmacokinet; 2021 Mar; 46(2):317-324. PubMed ID: 33619631 [TBL] [Abstract][Full Text] [Related]
12. Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer. Araki K; Fujita K; Ando Y; Nagashima F; Yamamoto W; Endo H; Miya T; Kodama K; Narabayashi M; Sasaki Y Cancer Sci; 2006 Nov; 97(11):1255-9. PubMed ID: 16965601 [TBL] [Abstract][Full Text] [Related]
13. Usefulness of one-point plasma SN-38G/SN-38 concentration ratios as a substitute for UGT1A1 genetic information after irinotecan administration. Hirose K; Yamashita K; Takada H; Kaneda N; Fukami K; Maruo E; Kitamura M; Hasegawa J; Maeda Y Int J Clin Oncol; 2014 Apr; 19(2):397-402. PubMed ID: 23605141 [TBL] [Abstract][Full Text] [Related]
14. Pharmacogenetics of uridine diphosphoglucuronosyltransferase (UGT) 1A family members and its role in patient response to irinotecan. Nagar S; Blanchard RL Drug Metab Rev; 2006; 38(3):393-409. PubMed ID: 16877259 [TBL] [Abstract][Full Text] [Related]
15. Streptomycin alleviates irinotecan-induced delayed-onset diarrhea in rats by a mechanism other than inhibition of β-glucuronidase activity in intestinal lumen. Kurita A; Kado S; Matsumoto T; Asakawa N; Kaneda N; Kato I; Uchida K; Onoue M; Yokokura T Cancer Chemother Pharmacol; 2011 Jan; 67(1):201-13. PubMed ID: 20354702 [TBL] [Abstract][Full Text] [Related]
16. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Gagné JF; Montminy V; Belanger P; Journault K; Gaucher G; Guillemette C Mol Pharmacol; 2002 Sep; 62(3):608-17. PubMed ID: 12181437 [TBL] [Abstract][Full Text] [Related]
17. Insights, challenges, and future directions in irinogenetics. Kim TW; Innocenti F Ther Drug Monit; 2007 Jun; 29(3):265-70. PubMed ID: 17529881 [TBL] [Abstract][Full Text] [Related]
18. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. Iyer L; King CD; Whitington PF; Green MD; Roy SK; Tephly TR; Coffman BL; Ratain MJ J Clin Invest; 1998 Feb; 101(4):847-54. PubMed ID: 9466980 [TBL] [Abstract][Full Text] [Related]
19. The relative contributions of carboxylesterase and beta-glucuronidase in the formation of SN-38 in human colorectal tumours. Tobin PJ; Dodds HM; Clarke S; Schnitzler M; Rivory LP Oncol Rep; 2003; 10(6):1977-9. PubMed ID: 14534729 [TBL] [Abstract][Full Text] [Related]
20. A humanized UGT1 mouse model expressing the UGT1A1*28 allele for assessing drug clearance by UGT1A1-dependent glucuronidation. Cai H; Nguyen N; Peterkin V; Yang YS; Hotz K; La Placa DB; Chen S; Tukey RH; Stevens JC Drug Metab Dispos; 2010 May; 38(5):879-86. PubMed ID: 20124398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]