BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26334609)

  • 21. Hedgehog Acyltransferase as a target in estrogen receptor positive, HER2 amplified, and tamoxifen resistant breast cancer cells.
    Matevossian A; Resh MD
    Mol Cancer; 2015 Apr; 14():72. PubMed ID: 25889650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, Synthesis, and Evaluation of Inhibitors of Hedgehog Acyltransferase.
    Ritzefeld M; Zhang L; Xiao Z; Andrei SA; Boyd O; Masumoto N; Rodgers UR; Artelsmair M; Sefer L; Hayes A; Gavriil ES; Raynaud FI; Burke R; Blagg J; Rzepa HS; Siebold C; Magee AI; Lanyon-Hogg T; Tate EW
    J Med Chem; 2024 Jan; 67(2):1061-1078. PubMed ID: 38198226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Palmitoylation of proteins in cancer.
    Resh MD
    Biochem Soc Trans; 2017 Apr; 45(2):409-416. PubMed ID: 28408481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Direct in vitro Fatty Acylation Assay for Hedgehog Acyltransferase.
    Schonbrun AR; Resh MD
    Bio Protoc; 2022 Dec; 12(24):. PubMed ID: 36618094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations in Hedgehog acyltransferase (Hhat) perturb Hedgehog signaling, resulting in severe acrania-holoprosencephaly-agnathia craniofacial defects.
    Dennis JF; Kurosaka H; Iulianella A; Pace J; Thomas N; Beckham S; Williams T; Trainor PA
    PLoS Genet; 2012; 8(10):e1002927. PubMed ID: 23055936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Palmitoyl acyltransferase assays and inhibitors (Review).
    Draper JM; Smith CD
    Mol Membr Biol; 2009 Jan; 26(1):5-13. PubMed ID: 19152182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma.
    Petrova E; Matevossian A; Resh MD
    Oncogene; 2015 Jan; 34(2):263-8. PubMed ID: 24469057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acyltransferase skinny hedgehog regulates TGFβ-dependent fibroblast activation in SSc.
    Liang R; Kagwiria R; Zehender A; Dees C; Bergmann C; Ramming A; Krasowska D; Michalska-Jakubus M; Kreuter A; Kraner ME; Schett G; Distler JHW
    Ann Rheum Dis; 2019 Sep; 78(9):1269-1273. PubMed ID: 31177096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Click-Chemistry Based Fluorometric Assay for Apolipoprotein N-acyltransferase from Enzyme Characterization to High-Throughput Screening.
    Nozeret K; Pernin A; Buddelmeijer N
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photochemical Probe Identification of a Small-Molecule Inhibitor Binding Site in Hedgehog Acyltransferase (HHAT)*.
    Lanyon-Hogg T; Ritzefeld M; Zhang L; Andrei SA; Pogranyi B; Mondal M; Sefer L; Johnston CD; Coupland CE; Greenfield JL; Newington J; Fuchter MJ; Magee AI; Siebold C; Tate EW
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13542-13547. PubMed ID: 33768725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioorthogonal click chemistry to assay mu-opioid receptor palmitoylation using 15-hexadecynoic acid and immunoprecipitation.
    Ebersole B; Petko J; Levenson R
    Anal Biochem; 2014 Apr; 451():25-7. PubMed ID: 24463015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel variant in
    Baz-Redón N; Soler-Colomer L; Fernández-Cancio M; Benito-Sanz S; Garrido M; Moliné T; Clemente M; Camats-Tarruella N; Yeste D
    Front Endocrinol (Lausanne); 2022; 13():957969. PubMed ID: 36303863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fluorescence-based assay to monitor autopalmitoylation of zDHHC proteins applicable to high-throughput screening.
    Hamel LD; Deschenes RJ; Mitchell DA
    Anal Biochem; 2014 Sep; 460():1-8. PubMed ID: 24878334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alkyne lipids as substrates for click chemistry-based in vitro enzymatic assays.
    Gaebler A; Milan R; Straub L; Hoelper D; Kuerschner L; Thiele C
    J Lipid Res; 2013 Aug; 54(8):2282-2290. PubMed ID: 23709689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry.
    Greaves J; Munro KR; Davidson SC; Riviere M; Wojno J; Smith TK; Tomkinson NC; Chamberlain LH
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1365-E1374. PubMed ID: 28167757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase.
    Lanyon-Hogg T; Masumoto N; Bodakh G; Konitsiotis AD; Thinon E; Rodgers UR; Owens RJ; Magee AI; Tate EW
    Data Brief; 2016 Jun; 7():257-81. PubMed ID: 27077078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of human palmitoyl-acyl transferase activity using peptides that mimic distinct palmitoylation motifs.
    Varner AS; Ducker CE; Xia Z; Zhuang Y; De Vos ML; Smith CD
    Biochem J; 2003 Jul; 373(Pt 1):91-9. PubMed ID: 12670300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clickable analogue of cerulenin as chemical probe to explore protein palmitoylation.
    Zheng B; Zhu S; Wu X
    ACS Chem Biol; 2015 Jan; 10(1):115-21. PubMed ID: 25322207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of key residues and regions important for porcupine-mediated Wnt acylation.
    Rios-Esteves J; Haugen B; Resh MD
    J Biol Chem; 2014 Jun; 289(24):17009-19. PubMed ID: 24798332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of micellar electrokinetic chromatography to measure palmitoylation of a peptide.
    Borland LM; Allbritton NL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(2):451-8. PubMed ID: 18926781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.