BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26334721)

  • 1. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.
    Ishimura A; Terashima M; Tange S; Suzuki T
    Cell Tissue Res; 2016 Mar; 363(3):723-33. PubMed ID: 26334721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression.
    Ishimura A; Minehata K; Terashima M; Kondoh G; Hara T; Suzuki T
    Development; 2012 Feb; 139(4):749-59. PubMed ID: 22241836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone demethylase JMJD5 is essential for embryonic development.
    Oh S; Janknecht R
    Biochem Biophys Res Commun; 2012 Mar; 420(1):61-5. PubMed ID: 22402282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation.
    Huang X; Zhang S; Qi H; Wang Z; Chen HW; Shao J; Shen J
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2286-95. PubMed ID: 26025680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of histone demethylase Fbxl10 leads to enhanced migration in mouse embryonic fibroblasts.
    Rohde M; Sievers E; Janzer A; Willmann D; Egert A; Schorle H; Schüle R; Kirfel J
    Exp Cell Res; 2016 Nov; 348(2):123-131. PubMed ID: 27646113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clipping of arginine-methylated histone tails by JMJD5 and JMJD7.
    Liu H; Wang C; Lee S; Deng Y; Wither M; Oh S; Ning F; Dege C; Zhang Q; Liu X; Johnson AM; Zang J; Chen Z; Janknecht R; Hansen K; Marrack P; Li CY; Kappler JW; Hagman J; Zhang G
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7717-E7726. PubMed ID: 28847961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JMJD5 regulates cell cycle and pluripotency in human embryonic stem cells.
    Zhu H; Hu S; Baker J
    Stem Cells; 2014 Aug; 32(8):2098-110. PubMed ID: 24740926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural tube development requires the cooperation of p53- and Gadd45a-associated pathways.
    Patterson AD; Hildesheim J; Fornace AJ; Hollander MC
    Birth Defects Res A Clin Mol Teratol; 2006 Feb; 76(2):129-32. PubMed ID: 16470852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway.
    Jin XL; Chandrakanthan V; Morgan HD; O'Neill C
    Biol Reprod; 2009 Feb; 80(2):286-94. PubMed ID: 18923161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53.
    Parant J; Chavez-Reyes A; Little NA; Yan W; Reinke V; Jochemsen AG; Lozano G
    Nat Genet; 2001 Sep; 29(1):92-5. PubMed ID: 11528400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators.
    Kawakami E; Tokunaga A; Ozawa M; Sakamoto R; Yoshida N
    Mech Dev; 2015 Feb; 135():31-42. PubMed ID: 25463925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of p53 in stromal fibroblasts enhances tumor cell proliferation through nitric-oxide-mediated cyclooxygenase 2 activation.
    Wada S; Matsushita Y; Tazawa H; Aoi W; Naito Y; Higashi A; Ohshima H; Yoshikawa T
    Free Radic Res; 2015 Mar; 49(3):269-78. PubMed ID: 25511472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly.
    Fukuda T; Tokunaga A; Sakamoto R; Yoshida N
    Mol Cell Neurosci; 2011 Mar; 46(3):614-24. PubMed ID: 21220025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A.
    Jeon BN; Kim MK; Choi WI; Koh DI; Hong SY; Kim KS; Kim M; Yun CO; Yoon J; Choi KY; Lee KR; Nephew KP; Hur MW
    Cancer Res; 2012 Mar; 72(5):1137-48. PubMed ID: 22253232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptosis in UV-C light irradiated p53 wild-type, apaf-1 and p53 knockout mouse embryonic fibroblasts: interplay of receptor and mitochondrial pathway.
    Tomicic MT; Christmann M; Kaina B
    Apoptosis; 2005 Dec; 10(6):1295-304. PubMed ID: 16215690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling.
    Lengner CJ; Steinman HA; Gagnon J; Smith TW; Henderson JE; Kream BE; Stein GS; Lian JB; Jones SN
    J Cell Biol; 2006 Mar; 172(6):909-21. PubMed ID: 16533949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The loss of mdm2 induces p53-mediated apoptosis.
    de Rozieres S; Maya R; Oren M; Lozano G
    Oncogene; 2000 Mar; 19(13):1691-7. PubMed ID: 10763826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JMJD5 inhibits lung cancer progression by regulating glucose metabolism through the p53/TIGAR pathway.
    Liu G; Qi H; Shen J
    Med Oncol; 2023 Apr; 40(5):145. PubMed ID: 37043051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function.
    Del Rizzo PA; Krishnan S; Trievel RC
    Mol Cell Biol; 2012 Oct; 32(19):4044-52. PubMed ID: 22851697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversion-inducing cysteine-rich protein with Kazal motifs interferes with epidermal growth factor receptor signaling.
    Kitajima S; Miki T; Takegami Y; Kido Y; Noda M; Hara E; Shamma A; Takahashi C
    Oncogene; 2011 Feb; 30(6):737-50. PubMed ID: 20890302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.