These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 26334961)

  • 41. Pharmaceutical formulation of a fixed-dose anti-tuberculosis combination.
    Danckwerts MP; Ebrahim S; Pillay V
    Int J Tuberc Lung Dis; 2003 Mar; 7(3):289-97. PubMed ID: 12661846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of Dried Emulsion/Mannitol Composite Microparticles through a Unique Spray Nozzle for Efficient Delivery of Hydrophilic Anti-tuberculosis Drug against Alveolar Macrophages.
    Maeda R; Ito T; Tagami T; Takii T; Ozeki T
    Biol Pharm Bull; 2019; 42(11):1846-1853. PubMed ID: 31685768
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhalable Antitubercular Therapy Mediated by Locust Bean Gum Microparticles.
    Alves AD; Cavaco JS; Guerreiro F; Lourenço JP; Rosa da Costa AM; Grenha A
    Molecules; 2016 May; 21(6):. PubMed ID: 27240337
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pulmonary Delivery of Isoniazid in Nanogel-Loaded Chitosan Hybrid Microparticles for Inhalation.
    Omar SM; Maziad NA; El-Tantawy NM
    J Aerosol Med Pulm Drug Deliv; 2019 Apr; 32(2):78-87. PubMed ID: 30526251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radiolabeling and evaluation of alginate blend-isoniazid microspheres by 99mTc for the treatment of tuberculosis in rabbit model.
    Samad A; Sultana Y; Khar RK; Aqil M; Kalam MA; Chuttani K; Mishra AK
    J Drug Target; 2008 Jul; 16(6):509-15. PubMed ID: 18604664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles.
    Bhardwaj A; Mehta S; Yadav S; Singh SK; Grobler A; Goyal AK; Mehta A
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1544-55. PubMed ID: 26178768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of biologically active insulin-loaded alginate microparticles prepared by spray drying.
    Bowey K; Swift BE; Flynn LE; Neufeld RJ
    Drug Dev Ind Pharm; 2013 Mar; 39(3):457-65. PubMed ID: 22397581
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gastroretentive drug delivery system of acyclovir-loaded alginate mucoadhesive microspheres: formulation and evaluation.
    Shadab ; Ahuja A; Khar RK; Baboota S; Chuttani K; Mishra AK; Ali J
    Drug Deliv; 2011 May; 18(4):255-64. PubMed ID: 21110695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Promising Chitosan-Coated Alginate-Tween 80 Nanoparticles as Rifampicin Coadministered Ascorbic Acid Delivery Carrier Against Mycobacterium tuberculosis.
    Scolari IR; Páez PL; Sánchez-Borzone ME; Granero GE
    AAPS PharmSciTech; 2019 Jan; 20(2):67. PubMed ID: 30627867
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formulation and statistical optimization of a novel crosslinked polymeric anti-tuberculosis drug delivery system.
    du Toit LC; Pillay V; Danckwerts MP; Penny C
    J Pharm Sci; 2008 Jun; 97(6):2176-207. PubMed ID: 17879985
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.
    Hiremath PS; Saha RN
    Int J Pharm; 2008 Oct; 362(1-2):118-25. PubMed ID: 18640251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2004 Apr; 53(4):635-40. PubMed ID: 14998985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis.
    Campos Pacheco JE; Yalovenko T; Riaz A; Kotov N; Davids C; Persson A; Falkman P; Feiler A; Godaly G; Johnson CM; Ekström M; Pilkington GA; Valetti S
    J Control Release; 2024 May; 369():231-250. PubMed ID: 38479444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and characterization of spray-dried powders intended for pulmonary delivery of insulin with regard to the selection of excipients.
    Razavi Rohani SS; Abnous K; Tafaghodi M
    Int J Pharm; 2014 Apr; 465(1-2):464-78. PubMed ID: 24560646
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug.
    Sethuraman VV; Hickey AJ
    AAPS PharmSciTech; 2002; 3(4):E28. PubMed ID: 12916922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach.
    Patil-Gadhe A; Pokharkar V
    Pulm Pharmacol Ther; 2014 Apr; 27(2):197-207. PubMed ID: 23916767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Encapsulation of Isoniazid-conjugated Phthalocyanine-In-Cyclodextrin-In-Liposomes Using Heating Method.
    Nkanga CI; Krause RWM
    Sci Rep; 2019 Aug; 9(1):11485. PubMed ID: 31391517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis.
    Kwok PC; Grabarek A; Chow MY; Lan Y; Li JC; Casettari L; Mason AJ; Lam JK
    Int J Pharm; 2015 Aug; 491(1-2):367-74. PubMed ID: 26151107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacokinetics of Inhaled Rifampicin Porous Particles for Tuberculosis Treatment: Insight into Rifampicin Absorption from the Lungs of Guinea Pigs.
    Garcia Contreras L; Sung J; Ibrahim M; Elbert K; Edwards D; Hickey A
    Mol Pharm; 2015 Aug; 12(8):2642-50. PubMed ID: 25942002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis.
    Pandey R; Khuller GK
    Tuberculosis (Edinb); 2005 Jul; 85(4):227-34. PubMed ID: 15922668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.