BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26334974)

  • 1. Resonance Raman enhancement optimization in the visible range by selecting different excitation wavelengths.
    Wang Z; Li Y
    J Biomed Opt; 2015 Sep; 20(9):095003. PubMed ID: 26334974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation wavelength dependent surface-enhanced Raman spectra of a dipping film of azobenzene-containing long-chain fatty acid on a silver mirror.
    Jung YM; Sato H; Ikeda T; Tashiro H; Ozaki Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1941-5. PubMed ID: 15248971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman spectroscopy and quantum-chemical calculations of push-pull molecules: 4-hydroxy-4'-nitroazobenzene and its anion.
    Ando RA; Rodríguez-Redondo JL; Sastre-Santos A; Fernandez-Lazaro F; Azzellini GC; Borin AC; Santos PS
    J Phys Chem A; 2007 Dec; 111(51):13452-6. PubMed ID: 18052266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy of white wines.
    Martin C; Bruneel JL; Guyon F; Médina B; Jourdes M; Teissedre PL; Guillaume F
    Food Chem; 2015 Aug; 181():235-40. PubMed ID: 25794745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of hazardous chemical using dual-wavelength Raman spectroscopy in the ultraviolet region.
    Lee JH; Jeong YS; Koh YJ; Kim J; Nam H; Son H; Choi SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122061. PubMed ID: 36335749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Raman and SERS spectra of indigo and indigo-Ag
    Ricci M; Lofrumento C; Becucci M; Castellucci EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():141-148. PubMed ID: 28709139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organelle specific imaging in live cells and immuno-labeling using resonance Raman probe.
    Li Y; Heo J; Lim CK; Pliss A; Kachynski AV; Kuzmin AN; Kim S; Prasad PN
    Biomaterials; 2015 Jun; 53():25-31. PubMed ID: 25890703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV Raman imaging--a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites.
    Frosch T; Tarcea N; Schmitt M; Thiele H; Langenhorst F; Popp J
    Anal Chem; 2007 Feb; 79(3):1101-8. PubMed ID: 17263342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.
    Lu L; Shi L; Secor J; Alfano R
    J Photochem Photobiol B; 2018 Feb; 179():18-22. PubMed ID: 29306722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars.
    Villar SE; Edwards HG; Worland MR
    Orig Life Evol Biosph; 2005 Oct; 35(5):489-506. PubMed ID: 16231211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources.
    István K; Keresztury G; Szép A
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Detection of the Intrinsic Difference in Raman Optical Activity of a Photoreceptor Protein under Preresonance and Resonance Conditions.
    Haraguchi S; Hara M; Shingae T; Kumauchi M; Hoff WD; Unno M
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11555-8. PubMed ID: 26216505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance hyper-Raman spectra of zinc phthalocyanine.
    Leng W; Myers Kelley A
    J Phys Chem A; 2008 Jul; 112(26):5925-9. PubMed ID: 18537230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy.
    López-Peña I; Leigh BS; Schlamadinger DE; Kim JE
    Biochemistry; 2015 Aug; 54(31):4770-83. PubMed ID: 26219819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.
    Christesen SD; Pendell Jones J; Lochner JM; Hyre AM
    Appl Spectrosc; 2008 Oct; 62(10):1078-83. PubMed ID: 18926015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation.
    Sato H; Chiba H; Tashiro H; Ozaki Y
    J Biomed Opt; 2001 Jul; 6(3):366-70. PubMed ID: 11516329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-scanned surface-enhanced Raman excitation spectroscopy.
    McFarland AD; Young MA; Dieringer JA; Van Duyne RP
    J Phys Chem B; 2005 Jun; 109(22):11279-85. PubMed ID: 16852377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subpicosecond solvent dynamics in charge-transfer transitions: challenges and opportunities in resonance Raman spectroscopy.
    McHale JL
    Acc Chem Res; 2001 Apr; 34(4):265-72. PubMed ID: 11308300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing the electromagnetic and chemical resonances of surface-enhanced Raman scattering for nucleic acids.
    Freeman LM; Pang L; Fainman Y
    ACS Nano; 2014 Aug; 8(8):8383-91. PubMed ID: 25065837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.