BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26334975)

  • 1. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity.
    Levitt JA; Chung PH; Suhling K
    J Biomed Opt; 2015 Sep; 20(9):096002. PubMed ID: 26334975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications.
    Klymchenko AS
    Acc Chem Res; 2017 Feb; 50(2):366-375. PubMed ID: 28067047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A red-emitting thiophene-modified BODIPY probe for fluorescence lifetime-based polarity imaging of lipid droplets in living cells.
    Žvirblis R; Maleckaitė K; Dodonova-Vaitkūnienė J; Jurgutis D; Žilėnaitė R; Karabanovas V; Tumkevičius S; Vyšniauskas A
    J Mater Chem B; 2023 May; 11(17):3919-3928. PubMed ID: 37060145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nile red: a selective fluorescent stain for intracellular lipid droplets.
    Greenspan P; Mayer EP; Fowler SD
    J Cell Biol; 1985 Mar; 100(3):965-73. PubMed ID: 3972906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nile Red lifetime reveals microplastic identity.
    Sancataldo G; Avellone G; Vetri V
    Environ Sci Process Impacts; 2020 Nov; 22(11):2266-2275. PubMed ID: 33064112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach.
    Ranjit S; Malacrida L; Jameson DM; Gratton E
    Nat Protoc; 2018 Sep; 13(9):1979-2004. PubMed ID: 30190551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime.
    Battisti A; Panettieri S; Abbandonato G; Jacchetti E; Cardarelli F; Signore G; Beltram F; Bizzarri R
    Anal Bioanal Chem; 2013 Jul; 405(19):6223-33. PubMed ID: 23780224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Advanced Live-Cell Imaging through Red/Near-Infrared Dye Labeling and Fluorescence Lifetime-Based Strategies.
    Bénard M; Schapman D; Chamot C; Dubois F; Levallet G; Komuro H; Galas L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ensemble and single-molecule fluorescence microscopy investigation of phase-separated monolayer films stained with Nile Red.
    Lu Y; Porterfield R; Thunder T; Paige MF
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):216-23. PubMed ID: 21115390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of Lipid Droplets in Living Cells and Fatty Livers of Mice Based on the Fluorescence of π-Extended Coumarin Using Fluorescence Lifetime Imaging Microscopy.
    Yoshihara T; Maruyama R; Shiozaki S; Yamamoto K; Kato SI; Nakamura Y; Tobita S
    Anal Chem; 2020 Apr; 92(7):4996-5003. PubMed ID: 32126762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence lifetime imaging microscopy for quantitative biological imaging.
    Chen LC; Lloyd WR; Chang CW; Sud D; Mycek MA
    Methods Cell Biol; 2013; 114():457-88. PubMed ID: 23931519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substituted 9-Diethylaminobenzo[
    Hornum M; Mulberg MW; Szomek M; Reinholdt P; Brewer JR; Wüstner D; Kongsted J; Nielsen P
    J Org Chem; 2021 Jan; 86(2):1471-1488. PubMed ID: 33370098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping live cell viscosity with an aggregation-induced emission fluorogen by means of two-photon fluorescence lifetime imaging.
    Chen S; Hong Y; Zeng Y; Sun Q; Liu Y; Zhao E; Bai G; Qu J; Hao J; Tang BZ
    Chemistry; 2015 Mar; 21(11):4315-20. PubMed ID: 25645956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency.
    Chen YC; Clegg RM
    J Microsc; 2011 Oct; 244(1):21-37. PubMed ID: 21801176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Nile Red/BODIPY-based bimodal probe sensitive to changes in the micropolarity and microviscosity of the endoplasmic reticulum.
    Yang Z; He Y; Lee JH; Chae WS; Ren WX; Lee JH; Kang C; Kim JS
    Chem Commun (Camb); 2014 Oct; 50(79):11672-5. PubMed ID: 25140835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative imaging of membrane micropolarity in living cells and tissues by spectral phasors analysis.
    Di Giacinto F; De Angelis C; De Spirito M; Maulucci G
    MethodsX; 2018; 5():1399-1412. PubMed ID: 30456174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence lifetime imaging of molecular rotors in living cells.
    Suhling K; Levitt JA; Chung PH; Kuimova MK; Yahioglu G
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic surfaces of tubulin probed by time-resolved and steady-state fluorescence of nile red.
    Sackett DL; Knutson JR; Wolff J
    J Biol Chem; 1990 Sep; 265(25):14899-906. PubMed ID: 2394705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular pH sensing using autofluorescence lifetime microscopy.
    Ogikubo S; Nakabayashi T; Adachi T; Islam MS; Yoshizawa T; Kinjo M; Ohta N
    J Phys Chem B; 2011 Sep; 115(34):10385-90. PubMed ID: 21776989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrofluorometric studies of the lipid probe, nile red.
    Greenspan P; Fowler SD
    J Lipid Res; 1985 Jul; 26(7):781-9. PubMed ID: 4031658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.