These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26335043)

  • 1. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.
    Yan R; Kappler A; Peiffer S
    Environ Sci Technol; 2015 Oct; 49(19):11403-10. PubMed ID: 26335043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of pyrite for pH control during hydrogenotrophic denitrification using metallic iron as the ultimate electron donor.
    Jha D; Bose P
    Chemosphere; 2005 Nov; 61(7):1020-31. PubMed ID: 16257322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment.
    Jørgensen CJ; Jacobsen OS; Elberling B; Aamand J
    Environ Sci Technol; 2009 Jul; 43(13):4851-7. PubMed ID: 19673275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer.
    Jakus N; Mellage A; Höschen C; Maisch M; Byrne JM; Mueller CW; Grathwohl P; Kappler A
    Environ Sci Technol; 2021 Jul; 55(14):9876-9884. PubMed ID: 34247483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer.
    Jakus N; Blackwell N; Osenbrück K; Straub D; Byrne JM; Wang Z; Glöckler D; Elsner M; Lueders T; Grathwohl P; Kleindienst S; Kappler A
    Appl Environ Microbiol; 2021 Jul; 87(16):e0046021. PubMed ID: 34085863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide.
    Kong L; Hu X; He M
    Environ Sci Technol; 2015 Mar; 49(6):3499-505. PubMed ID: 25714842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions.
    Liu T; Chen D; Li X; Li F
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30844067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Year
    Mitsunobu S; Ohashi Y; Makita H; Suzuki Y; Nozaki T; Ohigashi T; Ina T; Takaki Y
    Appl Environ Microbiol; 2021 Nov; 87(23):e0097721. PubMed ID: 34550782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C
    Water Sci Technol; 2016; 74(1):99-109. PubMed ID: 27386987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressive effects of ferric-catecholate complexes on pyrite oxidation.
    Li X; Hiroyoshi N; Tabelin CB; Naruwa K; Harada C; Ito M
    Chemosphere; 2019 Jan; 214():70-78. PubMed ID: 30257197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer.
    Zhang YC; Prommer H; Broers HP; Slomp CP; Greskowiak J; van der Grift B; Van Cappellen P
    Environ Sci Technol; 2013 Sep; 47(18):10415-22. PubMed ID: 23931144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification.
    Liu T; Hu Y; Chen N; He Q; Feng C
    J Hazard Mater; 2021 Aug; 416():125844. PubMed ID: 33878651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abiotic pyrite formation produces a large Fe isotope fractionation.
    Guilbaud R; Butler IB; Ellam RM
    Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous geochemical and surface science investigation of the effect of phosphate on pyrite oxidation.
    Elsetinow AR; Schoonen MA; Strongin DR
    Environ Sci Technol; 2001 Jun; 35(11):2252-7. PubMed ID: 11414026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater.
    Pu J; Feng C; Liu Y; Li R; Kong Z; Chen N; Tong S; Hao C; Liu Y
    Bioresour Technol; 2014 Dec; 173():117-123. PubMed ID: 25299487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of biogenic Fe
    Panda S; Akcil A; Mishra S; Erust C
    J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation.
    Bosch J; Meckenstock RU
    Biochem Soc Trans; 2012 Dec; 40(6):1280-3. PubMed ID: 23176468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New processes in the environmental chemistry of nitrite: nitration of phenol upon nitrite photoinduced oxidation.
    Vione D; Maurino V; Minero C; Pelizzetti E
    Environ Sci Technol; 2002 Feb; 36(4):669-76. PubMed ID: 11878381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.