These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26335200)

  • 1. A principle of economy predicts the functional architecture of grid cells.
    Wei XX; Prentice J; Balasubramanian V
    Elife; 2015 Sep; 4():e08362. PubMed ID: 26335200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A geometric attractor mechanism for self-organization of entorhinal grid modules.
    Kang L; Balasubramanian V
    Elife; 2019 Aug; 8():. PubMed ID: 31373556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal population codes for space: grid cells outperform place cells.
    Mathis A; Herz AV; Stemmler M
    Neural Comput; 2012 Sep; 24(9):2280-317. PubMed ID: 22594833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete coverage of space favors modularity of the grid system in the brain.
    Sanzeni A; Balasubramanian V; Tiana G; Vergassola M
    Phys Rev E; 2016 Dec; 94(6-1):062409. PubMed ID: 28085304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty.
    Towse BW; Barry C; Bush D; Burgess N
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20130290. PubMed ID: 24366144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust and efficient coding with grid cells.
    Vágó L; Ujfalussy BB
    PLoS Comput Biol; 2018 Jan; 14(1):e1005922. PubMed ID: 29309406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.
    Mosheiff N; Agmon H; Moriel A; Burak Y
    PLoS Comput Biol; 2017 Jun; 13(6):e1005597. PubMed ID: 28628647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.
    Yoon K; Lewallen S; Kinkhabwala AA; Tank DW; Fiete IR
    Neuron; 2016 Mar; 89(5):1086-99. PubMed ID: 26898777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
    Mhatre H; Gorchetchnikov A; Grossberg S
    Hippocampus; 2012 Feb; 22(2):320-34. PubMed ID: 21136517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns.
    Mathis A; Stemmler MB; Herz AV
    Elife; 2015 Apr; 4():. PubMed ID: 25910055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connecting multiple spatial scales to decode the population activity of grid cells.
    Stemmler M; Mathis A; Herz AV
    Sci Adv; 2015 Dec; 1(11):e1500816. PubMed ID: 26824061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for the differentiation between grid and conjunctive units in medial entorhinal cortex.
    Si B; Treves A
    Hippocampus; 2013 Dec; 23(12):1410-24. PubMed ID: 23966345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models of grid cells.
    Giocomo LM; Moser MB; Moser EI
    Neuron; 2011 Aug; 71(4):589-603. PubMed ID: 21867877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells.
    Pilly PK; Grossberg S
    J Cogn Neurosci; 2012 May; 24(5):1031-54. PubMed ID: 22288394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance coding strategies based on the entorhinal grid cell system.
    Huhn Z; Somogyvári Z; Kiss T; Erdi P
    Neural Netw; 2009; 22(5-6):536-43. PubMed ID: 19604670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of temporal coding of presynaptic entorhinal cortex grid cells on the formation of hippocampal place fields.
    Molter C; Yamaguchi Y
    Neural Netw; 2008; 21(2-3):303-10. PubMed ID: 18242058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase precession of grid cells in a network model without external pacemaker.
    Thurley K; Hellmundt F; Leibold C
    Hippocampus; 2013 Sep; 23(9):786-96. PubMed ID: 23576429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental boundaries as an error correction mechanism for grid cells.
    Hardcastle K; Ganguli S; Giocomo LM
    Neuron; 2015 May; 86(3):827-39. PubMed ID: 25892299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space, time and learning in the hippocampus: how fine spatial and temporal scales are expanded into population codes for behavioral control.
    Gorchetchnikov A; Grossberg S
    Neural Netw; 2007 Mar; 20(2):182-93. PubMed ID: 17222533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatial periodicity of grid cells is not sustained during reduced theta oscillations.
    Koenig J; Linder AN; Leutgeb JK; Leutgeb S
    Science; 2011 Apr; 332(6029):592-5. PubMed ID: 21527713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.