These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 26335503)

  • 1. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies.
    Wilson AA; Muñoz Rojo M; Abad B; Perez JA; Maiz J; Schomacker J; Martín-Gonzalez M; Borca-Tasciuc DA; Borca-Tasciuc T
    Nanoscale; 2015 Oct; 7(37):15404-12. PubMed ID: 26335503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes.
    Wilson AA; Borca-Tasciuc T
    Rev Sci Instrum; 2017 Jul; 88(7):074903. PubMed ID: 28764517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity measurements of thin films by non-contact scanning thermal microscopy under ambient conditions.
    Zhang Y; Zhu W; Borca-Tasciuc T
    Nanoscale Adv; 2021 Feb; 3(3):692-702. PubMed ID: 36133831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale heat transport analysis by scanning thermal microscopy: from calibration to high-resolution measurements.
    Vera-Londono L; Ruiz-Clavijo A; Pérez-Taborda JA; Martín-González M
    Nanoscale Adv; 2022 Jul; 4(15):3194-3211. PubMed ID: 36132820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid thermal conductivity measurements for combinatorial thin films.
    McDowell MG; Hill IG
    Rev Sci Instrum; 2013 May; 84(5):053906. PubMed ID: 23742565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperature thermal conductivity of platinum microwire by 3ω method.
    Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B
    Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of thermocouple-based scanning thermal microscope in active mode (2ω method).
    Nguyen TP; Thiery L; Euphrasie S; Gomès S; Hay B; Vairac P
    Rev Sci Instrum; 2019 Nov; 90(11):114901. PubMed ID: 31779385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering.
    Taborda JA; Romero JJ; Abad B; Muñoz-Rojo M; Mello A; Briones F; Gonzalez MS
    Nanotechnology; 2016 Apr; 27(17):175401. PubMed ID: 26967792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic thermal conductivity measurement of organic thin film with bidirectional 3ω method.
    Yamaguchi S; Shiga T; Ishioka S; Saito T; Kodama T; Shiomi J
    Rev Sci Instrum; 2021 Mar; 92(3):034902. PubMed ID: 33820006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness.
    Park NW; Lee WY; Kim JA; Song K; Lim H; Kim WD; Yoon SG; Lee SK
    Nanoscale Res Lett; 2014 Feb; 9(1):96. PubMed ID: 24571956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfabricated suspended island platform for the measurement of in-plane thermal conductivity of thin films and nanostructured materials with consideration of contact resistance.
    Alaie S; Goettler DF; Abbas K; Su MF; Reinke CM; El-Kady I; Leseman ZC
    Rev Sci Instrum; 2013 Oct; 84(10):105003. PubMed ID: 24182154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films.
    Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures.
    Lee SY; Kim GS; Lee MR; Lim H; Kim WD; Lee SK
    Nanotechnology; 2013 May; 24(18):185401. PubMed ID: 23575254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerosol jet printed 3 omega sensors for thermal conductivity measurement.
    Kempf N; Zhang Y
    Rev Sci Instrum; 2021 Oct; 92(10):105008. PubMed ID: 34717438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic temperature-dependent thermal conductivity by an Al
    Lee WY; Lee JH; Ahn JY; Park TH; Park NW; Kim GS; Park JS; Lee SK
    Nanotechnology; 2017 Mar; 28(10):105401. PubMed ID: 28145279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for measuring the thermal conductivity of small insulating samples.
    Jannot Y; Schaefer S; Degiovanni A; Bianchin J; Fierro V; Celzard A
    Rev Sci Instrum; 2019 May; 90(5):054901. PubMed ID: 31153257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Measurement of Thermal Conductivity by SThM Technique: Measurements, Calibration Protocols and Uncertainty Evaluation.
    Fleurence N; Demeyer S; Allard A; Douri S; Hay B
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials.
    Rojo MM; Martín J; Grauby S; Borca-Tasciuc T; Dilhaire S; Martin-Gonzalez M
    Nanoscale; 2014 Jul; 6(14):7858-65. PubMed ID: 24933655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.