BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

981 related articles for article (PubMed ID: 26335593)

  • 41. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.
    Makhloufi E; Yousfi FE; Marande W; Mila I; Hanana M; Bergès H; Mzid R; Bouzayen M
    J Exp Bot; 2014 Dec; 65(22):6359-71. PubMed ID: 25205575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiological and transcriptomic responses of reproductive stage soybean to drought stress.
    Xu C; Xia C; Xia Z; Zhou X; Huang J; Huang Z; Liu Y; Jiang Y; Casteel S; Zhang C
    Plant Cell Rep; 2018 Dec; 37(12):1611-1624. PubMed ID: 30099610
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
    Kazan K
    Trends Plant Sci; 2015 Apr; 20(4):219-29. PubMed ID: 25731753
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress.
    Huang L; Zhang F; Zhang F; Wang W; Zhou Y; Fu B; Li Z
    BMC Genomics; 2014 Nov; 15(1):1026. PubMed ID: 25428615
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptional analyses of two soybean cultivars under salt stress.
    Cadavid IC; Guzman F; de Oliveira-Busatto L; de Almeida RMC; Margis R
    Mol Biol Rep; 2020 Apr; 47(4):2871-2888. PubMed ID: 32227253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress.
    Belamkar V; Weeks NT; Bharti AK; Farmer AD; Graham MA; Cannon SB
    BMC Genomics; 2014 Nov; 15():950. PubMed ID: 25362847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
    Wang X; Khodadadi E; Fakheri B; Komatsu S
    J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide characterization and expression analysis of TOPP-type protein phosphatases in soybean (Glycine max L.) reveal the role of GmTOPP13 in drought tolerance.
    Wang S; Guo J; Zhang Y; Guo Y; Ji W
    Genes Genomics; 2021 Jul; 43(7):783-796. PubMed ID: 33864615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels.
    Le DT; Nishiyama R; Watanabe Y; Vankova R; Tanaka M; Seki M; Ham le H; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    PLoS One; 2012; 7(8):e42411. PubMed ID: 22900018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.
    Hao YJ; Wei W; Song QX; Chen HW; Zhang YQ; Wang F; Zou HF; Lei G; Tian AG; Zhang WK; Ma B; Zhang JS; Chen SY
    Plant J; 2011 Oct; 68(2):302-13. PubMed ID: 21707801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ABA signal transduction at the crossroad of biotic and abiotic stress responses.
    Lee SC; Luan S
    Plant Cell Environ; 2012 Jan; 35(1):53-60. PubMed ID: 21923759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress.
    Babula-Skowrońska D; Ludwików A; Cieśla A; Olejnik A; Cegielska-Taras T; Bartkowiak-Broda I; Sadowski J
    Plant Mol Biol; 2015 Jul; 88(4-5):445-57. PubMed ID: 26059040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrative System Biology Analysis of Transcriptomic Responses to Drought Stress in Soybean (
    Shahriari AG; Soltani Z; Tahmasebi A; Poczai P
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.
    Sun X; Luo X; Sun M; Chen C; Ding X; Wang X; Yang S; Yu Q; Jia B; Ji W; Cai H; Zhu Y
    Plant Cell Physiol; 2014 Jan; 55(1):99-118. PubMed ID: 24272249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overexpression of
    Noman M; Jameel A; Qiang WD; Ahmad N; Liu WC; Wang FW; Li HY
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31569565
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Small RNA profiles in soybean primary root tips under water deficit.
    Zheng Y; Hivrale V; Zhang X; Valliyodan B; Lelandais-Brière C; Farmer AD; May GD; Crespi M; Nguyen HT; Sunkar R
    BMC Syst Biol; 2016 Dec; 10(Suppl 5):126. PubMed ID: 28105955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling.
    Müller M; Munné-Bosch S
    Plant Physiol; 2015 Sep; 169(1):32-41. PubMed ID: 26103991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress.
    Zhang C; Zhang L; Zhang S; Zhu S; Wu P; Chen Y; Li M; Jiang H; Wu G
    BMC Plant Biol; 2015 Jan; 15():17. PubMed ID: 25604012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative transcriptome analysis reveals significant differences in the regulation of gene expression between hydrogen cyanide- and ethylene-treated Arabidopsis thaliana.
    Yu L; Liu Y; Xu F
    BMC Plant Biol; 2019 Mar; 19(1):92. PubMed ID: 30832566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.