These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26335618)

  • 1. Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells.
    Canha-Gouveia A; Rita Costa-Pinto A; Martins AM; Silva NA; Faria S; Sousa RA; Salgado AJ; Sousa N; Reis RL; Neves NM
    Biofabrication; 2015 Sep; 7(3):035009. PubMed ID: 26335618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.
    Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V
    J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds.
    Bagher Z; Ebrahimi-Barough S; Azami M; Safa M; Joghataei MT
    J Biomed Mater Res A; 2016 Jan; 104(1):218-26. PubMed ID: 26265047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation and differentiation of human Wharton's jelly stem cells on three-dimensional nanofibrous scaffolds.
    Gauthaman K; Fong CY; Venugopal JR; Biswas A; Ramakrishna S; Bongso A
    Methods Mol Biol; 2013; 1058():1-23. PubMed ID: 23526437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers.
    Bagher Z; Azami M; Ebrahimi-Barough S; Mirzadeh H; Solouk A; Soleimani M; Ai J; Nourani MR; Joghataei MT
    Mol Neurobiol; 2016 May; 53(4):2397-408. PubMed ID: 26001761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulus-dependent characteristics of Wharton's jelly mesenchymal stem cells (WJMSC) encapsulated in hydrogel microspheres.
    Ramesh A; Kanafi MM; Bhonde RR
    J Biomater Sci Polym Ed; 2014; 25(17):1946-61. PubMed ID: 25247724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord.
    Wang J; Sun B; Tian L; He X; Gao Q; Wu T; Ramakrishna S; Zheng J; Mo X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):637-645. PubMed ID: 27770937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of a biomimetic human artificial cornea model using Wharton's jelly mesenchymal stem cells.
    Garzón I; Martín-Piedra MA; Alfonso-Rodríguez C; González-Andrades M; Carriel V; Martínez-Gómez C; Campos A; Alaminos M
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4073-83. PubMed ID: 24906855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors.
    Mechiche Alami S; Rammal H; Boulagnon-Rombi C; Velard F; Lazar F; Drevet R; Laurent Maquin D; Gangloff SC; Hemmerlé J; Voegel JC; Francius G; Schaaf P; Boulmedais F; Kerdjoudj H
    Acta Biomater; 2017 Feb; 49():575-589. PubMed ID: 27888100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines.
    Thapsukhon B; Daranarong D; Meepowpan P; Suree N; Molloy R; Inthanon K; Wongkham W; Punyodom W
    J Biomater Sci Polym Ed; 2014 Jul; 25(10):1028-44. PubMed ID: 24856087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism.
    Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials.
    Duan S; Yang X; Mei F; Tang Y; Li X; Shi Y; Mao J; Zhang H; Cai Q
    J Biomed Mater Res A; 2015 Apr; 103(4):1424-35. PubMed ID: 25046153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering.
    Lin YH; Chiu YC; Shen YF; Wu YA; Shie MY
    J Mater Sci Mater Med; 2017 Dec; 29(1):11. PubMed ID: 29282550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells.
    Seo MS; Park SB; Kang KS
    Cell Transplant; 2012; 21(7):1493-502. PubMed ID: 22732242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM
    Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation of human Wharton's jelly stem cells on nanofibrous substrates in vitro.
    Gauthaman K; Venugopal JR; Yee FC; Biswas A; Ramakrishna S; Bongso A
    Tissue Eng Part A; 2011 Jan; 17(1-2):71-81. PubMed ID: 20673136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the role of alginate containing high guluronic acid on osteogenic differentiation capacity of human umbilical cord Wharton's jelly mesenchymal stem cells.
    Bijan Nejad D; Azandeh S; Habibi R; Mansouri E; Bayati V; Ahmadi Angali K
    J Microencapsul; 2017 Dec; 34(8):732-743. PubMed ID: 29053065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.