These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 26335945)

  • 1. Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media.
    Cuny L; Herrling MP; Guthausen G; Horn H; Delay M
    J Contam Hydrol; 2015 Nov; 182():51-62. PubMed ID: 26335945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH.
    Jones EH; Su C
    J Hazard Mater; 2014 Jun; 275():79-88. PubMed ID: 24853139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and retention of differently coated CeO
    Degenkolb L; Dippon U; Pabst S; Klitzke S
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):15905-15919. PubMed ID: 30963436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.
    Taghavy A; Pennell KD; Abriola LM
    J Contam Hydrol; 2015 Jan; 172():48-60. PubMed ID: 25437227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing effects of dissolved and media surface-bound organic matter on titanium dioxide nanoparticles transport in iron oxide-coated porous media under acidic conditions.
    Zhang R; Tu C; Zhang H; Luo Y
    J Hazard Mater; 2022 Sep; 438():129421. PubMed ID: 35779396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.
    Herrling MP; Lackner S; Tatti O; Guthausen G; Delay M; Franzreb M; Horn H
    Sci Total Environ; 2016 Feb; 544():722-9. PubMed ID: 26674701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new catechol-functionalized polyamidoamine as an effective SPION stabilizer.
    Galli M; Rossotti B; Arosio P; Ferretti AM; Panigati M; Ranucci E; Ferruti P; Salvati A; Maggioni D
    Colloids Surf B Biointerfaces; 2019 Feb; 174():260-269. PubMed ID: 30469047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural organic matter enhanced mobility of nano zerovalent iron.
    Johnson RL; Johnson GO; Nurmi JT; Tratnyek PG
    Environ Sci Technol; 2009 Jul; 43(14):5455-60. PubMed ID: 19708381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An image processing approach for investigation on transport of iron oxide nanoparticles (FE
    Golzar M; Azhdary Moghaddam M; Saghravani SF; Dahrazma B
    J Contam Hydrol; 2018 Apr; 211():77-84. PubMed ID: 29627132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media.
    Jiang X; Tong M; Kim H
    J Colloid Interface Sci; 2012 Nov; 386(1):34-43. PubMed ID: 22840876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter.
    Park HS; Koduru JR; Choo KH; Lee B
    J Hazard Mater; 2015 Apr; 286():315-24. PubMed ID: 25594935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.
    Mitzel MR; Tufenkji N
    Environ Sci Technol; 2014; 48(5):2715-23. PubMed ID: 24552618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and viability of Escherichia coli cells in clean and iron oxide coated sand following coating with silver nanoparticles.
    Ngwenya BT; Curry P; Kapetas L
    J Contam Hydrol; 2015 Aug; 179():35-46. PubMed ID: 26042624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.
    Laumann S; Micić V; Lowry GV; Hofmann T
    Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.
    HonetschlÄgerová L; Janouškovcová P; Kubal M
    Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.