BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 26336179)

  • 1. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.
    Kortsch S; Primicerio R; Fossheim M; Dolgov AV; Aschan M
    Proc Biol Sci; 2015 Sep; 282(1814):. PubMed ID: 26336179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web.
    Pecuchet L; Blanchet MA; Frainer A; Husson B; Jørgensen LL; Kortsch S; Primicerio R
    Glob Chang Biol; 2020 Sep; 26(9):4894-4906. PubMed ID: 32479687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate-driven changes in functional biogeography of Arctic marine fish communities.
    Frainer A; Primicerio R; Kortsch S; Aune M; Dolgov AV; Fossheim M; Aschan MM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12202-12207. PubMed ID: 29087943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple facets of marine biodiversity in the Pacific Arctic under future climate.
    Alabia ID; Molinos JG; Saitoh SI; Hirata T; Hirawake T; Mueter FJ
    Sci Total Environ; 2020 Nov; 744():140913. PubMed ID: 32721679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate-driven benthic invertebrate activity and biogeochemical functioning across the Barents Sea polar front.
    Solan M; Ward ER; Wood CL; Reed AJ; Grange LJ; Godbold JA
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190365. PubMed ID: 32862817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifts in the composition and distribution of Pacific Arctic larval fish assemblages in response to rapid ecosystem change.
    Axler KE; Goldstein ED; Nielsen JM; Deary AL; Duffy-Anderson JT
    Glob Chang Biol; 2023 Aug; 29(15):4212-4233. PubMed ID: 37058084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonality in contaminant accumulation in Arctic marine pelagic food webs using trophic magnification factor as a measure of bioaccumulation.
    Hallanger IG; Warner NA; Ruus A; Evenset A; Christensen G; Herzke D; Gabrielsen GW; Borgå K
    Environ Toxicol Chem; 2011 May; 30(5):1026-35. PubMed ID: 21312250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boreal marine fauna from the Barents Sea disperse to Arctic Northeast Greenland.
    Andrews AJ; Christiansen JS; Bhat S; Lynghammar A; Westgaard JI; Pampoulie C; Præbel K
    Sci Rep; 2019 Apr; 9(1):5799. PubMed ID: 30967599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arctic marine fishes and their fisheries in light of global change.
    Christiansen JS; Mecklenburg CW; Karamushko OV
    Glob Chang Biol; 2014 Feb; 20(2):352-9. PubMed ID: 24105993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.
    Descamps S; Aars J; Fuglei E; Kovacs KM; Lydersen C; Pavlova O; Pedersen ÅØ; Ravolainen V; Strøm H
    Glob Chang Biol; 2017 Feb; 23(2):490-502. PubMed ID: 27250039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change dynamics and mercury temporal trends in Northeast Arctic cod (Gadus morhua) from the Barents Sea ecosystem.
    Bank MS; Ho QT; Ingvaldsen RB; Duinker A; Nilsen BM; Maage A; Frantzen S
    Environ Pollut; 2023 Dec; 338():122706. PubMed ID: 37821039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate-Driven Shifts in Marine Species Ranges: Scaling from Organisms to Communities.
    Pinsky ML; Selden RL; Kitchel ZJ
    Ann Rev Mar Sci; 2020 Jan; 12():153-179. PubMed ID: 31505130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs.
    Havermans C; Auel H; Hagen W; Held C; Ensor NS; A Tarling G
    Adv Mar Biol; 2019; 82():51-92. PubMed ID: 31229150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What and where? Predicting invasion hotspots in the Arctic marine realm.
    Goldsmit J; McKindsey CW; Schlegel RW; Stewart DB; Archambault P; Howland KL
    Glob Chang Biol; 2020 Sep; 26(9):4752-4771. PubMed ID: 32407554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change affects the distribution of diversity across marine food webs.
    Thompson MSA; Couce E; Schratzberger M; Lynam CP
    Glob Chang Biol; 2023 Dec; 29(23):6606-6619. PubMed ID: 37814904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifting fish distributions in warming sub-Arctic oceans.
    Campana SE; Stefánsdóttir RB; Jakobsdóttir K; Sólmundsson J
    Sci Rep; 2020 Oct; 10(1):16448. PubMed ID: 33020548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid climate change increases diversity and homogenizes composition of coastal fish at high latitudes.
    Siwertsson A; Lindström U; Aune M; Berg E; Skarðhamar J; Varpe Ø; Primicerio R
    Glob Chang Biol; 2024 May; 30(5):e17273. PubMed ID: 38727723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From projected species distribution to food-web structure under climate change.
    Albouy C; Velez L; Coll M; Colloca F; Le Loc'h F; Mouillot D; Gravel D
    Glob Chang Biol; 2014 Mar; 20(3):730-41. PubMed ID: 24214576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic transfer of contaminants in a changing arctic marine food web: Cumberland Sound, Nunavut, Canada.
    McKinney MA; McMeans BC; Tomy GT; Rosenberg B; Ferguson SH; Morris A; Muir DC; Fisk AT
    Environ Sci Technol; 2012 Sep; 46(18):9914-22. PubMed ID: 22957980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.