BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 26336267)

  • 21. An additional step in the transmission of Yersinia pestis?
    Easterday WR; Kausrud KL; Star B; Heier L; Haley BJ; Ageyev V; Colwell RR; Stenseth NC
    ISME J; 2012 Feb; 6(2):231-6. PubMed ID: 21833036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biovar-related differences apparent in the flea foregut colonization phenotype of distinct Yersinia pestis strains do not impact transmission efficiency.
    Lemon A; Sagawa J; Gravelle K; Vadyvaloo V
    Parasit Vectors; 2020 Jul; 13(1):335. PubMed ID: 32611387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas.
    Eisen RJ; Wilder AP; Bearden SW; Montenieri JA; Gage KL
    J Med Entomol; 2007 Jul; 44(4):678-82. PubMed ID: 17695025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acquisition of yersinia murine toxin enabled Yersinia pestis to expand the range of mammalian hosts that sustain flea-borne plague.
    Bland DM; Miarinjara A; Bosio CF; Calarco J; Hinnebusch BJ
    PLoS Pathog; 2021 Oct; 17(10):e1009995. PubMed ID: 34648607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Value of fleas in the natural foci of plague in the caucasus].
    Kotti BK
    Med Parazitol (Mosk); 2011; (4):28-30. PubMed ID: 22308709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible vector dissemination by swift foxes following a plague epizootic in black-tailed prairie dogs in northwestern Texas.
    McGee BK; Butler MJ; Pence DB; Alexander JL; Nissen JB; Ballard WB; Nicholson KL
    J Wildl Dis; 2006 Apr; 42(2):415-20. PubMed ID: 16870868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-infection Assay to Determine Yersinia pestis Competitive Fitness in Fleas.
    Lemon A; Silva-Rohwer A; Sagawa J; Vadyvaloo V
    Methods Mol Biol; 2019; 2010():153-166. PubMed ID: 31177437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms.
    Hinnebusch BJ; Bland DM; Bosio CF; Jarrett CO
    PLoS Negl Trop Dis; 2017 Jan; 11(1):e0005276. PubMed ID: 28081130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis.
    Erickson DL; Jarrett CO; Wren BW; Hinnebusch BJ
    J Bacteriol; 2006 Feb; 188(3):1113-9. PubMed ID: 16428415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Yersinia pestis gene expression in the flea vector.
    Vadyvaloo V; Jarrett C; Sturdevant D; Sebbane F; Hinnebusch BJ
    Adv Exp Med Biol; 2007; 603():192-200. PubMed ID: 17966415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Risk of maritime introduction of plague from Madagascar to Mayotte.
    Rahelinirina S; Harimalala M; Margueron T; Ramihangihajason T; Mansotte F; Rajerison M; Pagès F; Boyer S
    Acta Trop; 2018 Nov; 187():140-143. PubMed ID: 30075098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rodent hosts and flea vectors in Brazilian plague foci: a review.
    Reis DA Silva Fernandes DL; Filgueira Bezerra M; Sobreira Bezerra DA Silva M; Leal NC; DE Souza Reis CR; DE Almeida AMP
    Integr Zool; 2021 Nov; 16(6):810-819. PubMed ID: 32776421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of vector infectivity rates for plague by means of a standard curve-based competitive polymerase chain reaction method to quantify Yersinia pestis in fleas.
    Hinnebusch BJ; Gage KL; Schwan TG
    Am J Trop Med Hyg; 1998 May; 58(5):562-9. PubMed ID: 9598442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague.
    Hinnebusch BJ; Erickson DL
    Curr Top Microbiol Immunol; 2008; 322():229-48. PubMed ID: 18453279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecological Opportunity, Evolution, and the Emergence of Flea-Borne Plague.
    Hinnebusch BJ; Chouikha I; Sun YC
    Infect Immun; 2016 Jul; 84(7):1932-40. PubMed ID: 27160296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential Roles of Pigs, Small Ruminants, Rodents, and Their Flea Vectors in Plague Epidemiology in Sinda District, Eastern Zambia.
    Nyirenda SS; Hang'ombe BM; Kilonzo BS; Kangwa HL; Mulenga E; Moonga L
    J Med Entomol; 2017 May; 54(3):719-725. PubMed ID: 28399281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective isolation of Yersinia pestis from plague-infected fleas.
    Sarovich DS; Colman RE; Price EP; Chung WK; Lee J; Schupp JM; Cobble KR; Busch JD; Alexander J; Keim P; Wagner DM
    J Microbiol Methods; 2010 Jul; 82(1):95-7. PubMed ID: 20385178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas.
    Hinnebusch J; Schwan TG
    J Clin Microbiol; 1993 Jun; 31(6):1511-4. PubMed ID: 8314993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Natural infection by Yersinia pestis, in fleas from plague foci in the northeast of Brazil].
    Brasil DP; de Carvalho FG; de Almeida CR; de Almeida AM
    Rev Soc Bras Med Trop; 1989; 22(4):177-81. PubMed ID: 2487774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantities of Yersinia pestis in fleas (Siphonaptera: Pulicidae, Ceratophyllidae, and Hystrichopsyllidae) collected from areas of known or suspected plague activity.
    Engelthaler DM; Gage KL
    J Med Entomol; 2000 May; 37(3):422-6. PubMed ID: 15535587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.