These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26336694)

  • 1. Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property.
    Shi J; Cai K; Qin QH
    Mol Cell Biomech; 2014 Dec; 11(4):235-48. PubMed ID: 26336694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation.
    Bahari MK; Farahmand F; Rouhi G; Movahhedy MR
    Comput Methods Biomech Biomed Engin; 2012; 15(8):835-44. PubMed ID: 21547784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of bone adaptation as an optimization process.
    Bagge M
    J Biomech; 2000 Nov; 33(11):1349-57. PubMed ID: 10940393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric investigation of load-induced structure remodeling in the proximal femur.
    Marzban A; Canavan P; Warner G; Vaziri A; Nayeb-Hashemi H
    Proc Inst Mech Eng H; 2012 Jun; 226(6):450-60. PubMed ID: 22783761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur.
    Vahdati A; Walscharts S; Jonkers I; Garcia-Aznar JM; Vander Sloten J; van Lenthe GH
    J Mech Behav Biomed Mater; 2014 Feb; 30():244-52. PubMed ID: 24342624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of muscle loading on the simulation of bone remodelling in the proximal femur.
    Bitsakos C; Kerner J; Fisher I; Amis AA
    J Biomech; 2005 Jan; 38(1):133-9. PubMed ID: 15519348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of topology optimization on the quantitative description of the external shape of bone structure.
    Xinghua Z; He G; Bingzhao G
    J Biomech; 2005 Aug; 38(8):1612-20. PubMed ID: 15958218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of orthotropic microstructure remodelling of cancellous bone.
    Kowalczyk P
    J Biomech; 2010 Feb; 43(3):563-9. PubMed ID: 19879580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-element analysis of the effect of basic hip movements on the mechanical stimulus within a proximal femur.
    Tovar-López FJ; Domínguez-Hernández VM; Diez-García Mdel P; Araujo-Monsalvo VM
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S32-8. PubMed ID: 25264795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical properties across trabeculae from the proximal femur of normal and ovariectomised sheep.
    Brennan O; Kennedy OD; Lee TC; Rackard SM; O'Brien FJ
    J Biomech; 2009 Mar; 42(4):498-503. PubMed ID: 19171344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of load-induced bone structural remodelling using stress-limit criterion.
    Marzban A; Nayeb-Hashemi H; Vaziri A
    Comput Methods Biomech Biomed Engin; 2015; 18(3):259-68. PubMed ID: 23697838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.