BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26336838)

  • 1. Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal-organic frameworks based on DUT-5.
    Gotthardt MA; Grosjean S; Brunner TS; Kotzel J; Gänzler AM; Wolf S; Bräse S; Kleist W
    Dalton Trans; 2015 Oct; 44(38):16802-9. PubMed ID: 26336838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline functionalization of the mesoporous metal-organic framework DUT-32.
    Kutzscher C; Hoffmann HC; Krause S; Stoeck U; Senkovska I; Brunner E; Kaskel S
    Inorg Chem; 2015 Feb; 54(3):1003-9. PubMed ID: 25490603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks.
    Jiang HL; Feng D; Liu TF; Li JR; Zhou HC
    J Am Chem Soc; 2012 Sep; 134(36):14690-3. PubMed ID: 22906023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically crosslinked isoreticular metal-organic frameworks.
    Allen CA; Boissonnault JA; Cirera J; Gulland R; Paesani F; Cohen SM
    Chem Commun (Camb); 2013 Apr; 49(31):3200-2. PubMed ID: 23486829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The "click" reaction involving metal azides, metal alkynes, or both: an exploration into multimetal structures.
    Casarrubios L; de la Torre MC; Sierra MA
    Chemistry; 2013 Mar; 19(11):3534-41. PubMed ID: 23418069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-synthetic modification of tagged metal-organic frameworks.
    Burrows AD; Frost CG; Mahon MF; Richardson C
    Angew Chem Int Ed Engl; 2008; 47(44):8482-6. PubMed ID: 18825761
    [No Abstract]   [Full Text] [Related]  

  • 7. Novel functionalized metal-organic framework based on unique hexagonal prismatic clusters.
    Yue Q; Yan L; Zhang JY; Gao EQ
    Inorg Chem; 2010 Oct; 49(19):8647-9. PubMed ID: 20831253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of cavity size and chemical environment on the adsorption properties of isoreticular metal-organic frameworks: an inverse gas chromatography study.
    Gutiérrez I; Díaz E; Vega A; Ordóñez S
    J Chromatogr A; 2013 Jan; 1274():173-80. PubMed ID: 23274075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide-alkyne cycloaddition.
    Lima CG; Ali A; van Berkel SS; Westermann B; Paixão MW
    Chem Commun (Camb); 2015 Jul; 51(54):10784-96. PubMed ID: 26066359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: triazole linkages from amines.
    Beckmann HS; Wittmann V
    Org Lett; 2007 Jan; 9(1):1-4. PubMed ID: 17192070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine.
    Bae I; Han H; Chang S
    J Am Chem Soc; 2005 Feb; 127(7):2038-9. PubMed ID: 15713069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reagentless thermal post-synthetic rearrangement of an allyloxy-tagged metal-organic framework.
    Burrows AD; Hunter SO; Mahon MF; Richardson C
    Chem Commun (Camb); 2013 Feb; 49(10):990-2. PubMed ID: 23254416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning structural topologies of three photoluminescent metal-organic frameworks via isomeric biphenyldicarboxylates.
    Guo F; Wang F; Yang H; Zhang X; Zhang J
    Inorg Chem; 2012 Sep; 51(18):9677-82. PubMed ID: 22946624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A recyclable ruthenium(II) complex supported on magnetic nanoparticles: a regioselective catalyst for alkyne-azide cycloaddition.
    Wang D; Salmon L; Ruiz J; Astruc D
    Chem Commun (Camb); 2013 Aug; 49(62):6956-8. PubMed ID: 23807317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylated N-sulfonylamidines: highly efficient copper-catalyzed multicomponent reaction with sugar alkynes, sulfonyl azides, and amines.
    Mandal S; Gauniyal HM; Pramanik K; Mukhopadhyay B
    J Org Chem; 2007 Dec; 72(25):9753-6. PubMed ID: 17985923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligonucleotide functionalization by a novel alkyne-modified nonnucleosidic reagent obtained by versatile building block chemistry.
    Kupryushkin MS; Konevetz DA; Vasilyeva SV; Kuznetsova AS; Stetsenko DA; Pyshnyi DV
    Nucleosides Nucleotides Nucleic Acids; 2013; 32(6):306-19. PubMed ID: 23638924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal chelating systems synthesized using the copper(I) catalyzed azide-alkyne cycloaddition.
    Struthers H; Mindt TL; Schibli R
    Dalton Trans; 2010 Jan; 39(3):675-96. PubMed ID: 20066208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of symmetrical and unsymmetrical PAMAM dendrimers by fusion between azide- and alkyne-functionalized PAMAM dendrons.
    Lee JW; Kim JH; Kim HJ; Han SC; Kim JH; Shin WS; Jin SH
    Bioconjug Chem; 2007; 18(2):579-84. PubMed ID: 17335177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and reactivity of Zn-biphenyl metal-organic frameworks, introducing a diphenylphosphino functional group.
    Ranocchiari M; van Bokhoven JA
    Chimia (Aarau); 2013; 67(6):397-402. PubMed ID: 23945099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular azide-alkyne [3 + 2] cycloaddition: versatile route to new heterocyclic structural scaffolds.
    Li R; Jansen DJ; Datta A
    Org Biomol Chem; 2009 May; 7(9):1921-30. PubMed ID: 19590789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.