These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
643 related articles for article (PubMed ID: 26337075)
1. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data. Sullivan TR; Salter AB; Ryan P; Lee KJ Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075 [TBL] [Abstract][Full Text] [Related]
2. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J; Akhtar-Danesh N; Dolovich L; Thabane L; BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148 [TBL] [Abstract][Full Text] [Related]
3. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
5. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB Trials; 2016 Jul; 17():341. PubMed ID: 27450066 [TBL] [Abstract][Full Text] [Related]
6. Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias. Curnow E; Tilling K; Heron JE; Cornish RP; Carpenter JR Front Epidemiol; 2023 Sep; 3():1237447. PubMed ID: 37974561 [TBL] [Abstract][Full Text] [Related]
7. Dealing with missing outcome data in randomized trials and observational studies. Groenwold RH; Donders AR; Roes KC; Harrell FE; Moons KG Am J Epidemiol; 2012 Feb; 175(3):210-7. PubMed ID: 22262640 [TBL] [Abstract][Full Text] [Related]
8. Comparison of several imputation methods for missing baseline data in propensity scores analysis of binary outcome. Crowe BJ; Lipkovich IA; Wang O Pharm Stat; 2010; 9(4):269-79. PubMed ID: 19718652 [TBL] [Abstract][Full Text] [Related]
9. Handling of Missing Outcome Data in Acute Stroke Trials: Advantages of Multiple Imputation Using Baseline and Postbaseline Variables. Young-Saver DF; Gornbein J; Starkman S; Saver JL J Stroke Cerebrovasc Dis; 2018 Dec; 27(12):3662-3669. PubMed ID: 30297167 [TBL] [Abstract][Full Text] [Related]
10. Analyses Using Multiple Imputation Need to Consider Missing Data in Auxiliary Variables. Madley-Dowd P; Curnow E; Hughes RA; Cornish R; Tilling K; Heron J Am J Epidemiol; 2024 Aug; ():. PubMed ID: 39191658 [TBL] [Abstract][Full Text] [Related]
11. Missing data and imputation: a practical illustration in a prognostic study on low back pain. Vergouw D; Heymans MW; van der Windt DA; Foster NE; Dunn KM; van der Horst HE; de Vet HC J Manipulative Physiol Ther; 2012 Jul; 35(6):464-71. PubMed ID: 22964020 [TBL] [Abstract][Full Text] [Related]
12. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. White IR; Carlin JB Stat Med; 2010 Dec; 29(28):2920-31. PubMed ID: 20842622 [TBL] [Abstract][Full Text] [Related]
13. Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach. Qu Y; Lipkovich I Stat Med; 2009 Apr; 28(9):1402-14. PubMed ID: 19222021 [TBL] [Abstract][Full Text] [Related]
14. Propensity score analysis with partially observed covariates: How should multiple imputation be used? Leyrat C; Seaman SR; White IR; Douglas I; Smeeth L; Kim J; Resche-Rigon M; Carpenter JR; Williamson EJ Stat Methods Med Res; 2019 Jan; 28(1):3-19. PubMed ID: 28573919 [TBL] [Abstract][Full Text] [Related]
15. Should multiple imputation be the method of choice for handling missing data in randomized trials? Sullivan TR; White IR; Salter AB; Ryan P; Lee KJ Stat Methods Med Res; 2018 Sep; 27(9):2610-2626. PubMed ID: 28034175 [TBL] [Abstract][Full Text] [Related]
16. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related]
17. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
18. Dealing with missing delirium assessments in prospective clinical studies of the critically ill: a simulation study and reanalysis of two delirium studies. Raman R; Chen W; Harhay MO; Thompson JL; Ely EW; Pandharipande PP; Patel MB BMC Med Res Methodol; 2021 May; 21(1):97. PubMed ID: 33952189 [TBL] [Abstract][Full Text] [Related]
19. Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level. Rombach I; Gray AM; Jenkinson C; Murray DW; Rivero-Arias O BMC Med Res Methodol; 2018 Aug; 18(1):87. PubMed ID: 30153796 [TBL] [Abstract][Full Text] [Related]
20. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. Donneau AF; Mauer M; Lambert P; Molenberghs G; Albert A J Biopharm Stat; 2015; 25(3):570-601. PubMed ID: 24905056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]