These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 26337122)
1. Using frequency analysis to improve the precision of human body posture algorithms based on Kalman filters. Olivares A; Górriz JM; Ramírez J; Olivares G Comput Biol Med; 2016 May; 72():229-38. PubMed ID: 26337122 [TBL] [Abstract][Full Text] [Related]
2. Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation. Olivares A; Górriz JM; Ramírez J; Olivares G Stud Health Technol Inform; 2014; 207():37-46. PubMed ID: 25488209 [TBL] [Abstract][Full Text] [Related]
3. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. De Groote F; De Laet T; Jonkers I; De Schutter J J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414 [TBL] [Abstract][Full Text] [Related]
4. Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter. Nez A; Fradet L; Marin F; Monnet T; Lacouture P Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30332842 [TBL] [Abstract][Full Text] [Related]
5. Body sensor network-based strapdown orientation estimation: application to human locomotion. Misgeld BJ; Rüschen D; Kim S; Leonhardt S IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650480. PubMed ID: 24187297 [TBL] [Abstract][Full Text] [Related]
6. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation. Joukov V; Bonnet V; Karg M; Venture G; Kulic D IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):407-418. PubMed ID: 28141526 [TBL] [Abstract][Full Text] [Related]
7. Estimation of noise parameters in dynamical system identification with Kalman filters. Kwasniok F Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036214. PubMed ID: 23031004 [TBL] [Abstract][Full Text] [Related]
8. Using Accelerometer Data to Tune the Parameters of an Extended Kalman Filter for Optical Motion Capture: Preliminary Application to Gait Analysis. Cuadrado J; Michaud F; Lugrís U; Pérez Soto M Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435369 [TBL] [Abstract][Full Text] [Related]
9. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. de Vries WH; Veeger HE; Baten CT; van der Helm FC Gait Posture; 2009 Jun; 29(4):535-41. PubMed ID: 19150239 [TBL] [Abstract][Full Text] [Related]
10. Estimating body segment orientation by applying inertial and magnetic sensing near ferromagnetic materials. Roetenberg D; Baten CT; Veltink PH IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):469-71. PubMed ID: 17894280 [TBL] [Abstract][Full Text] [Related]
11. An approach to improve the offshore platform coordinates accuracy by using multichannel Kalman filtering. Hajiyev ChM; Caliskan F ISA Trans; 2003 Jan; 42(1):53-61. PubMed ID: 12546468 [TBL] [Abstract][Full Text] [Related]
12. Rider trunk and bicycle pose estimation with fusion of force/inertial sensors. Zhang Y; Chen K; Yi J IEEE Trans Biomed Eng; 2013 Sep; 60(9):2541-51. PubMed ID: 23629841 [TBL] [Abstract][Full Text] [Related]
13. Human Pose Estimation from Video and IMUs. Marcard Tv; Pons-Moll G; Rosenhahn B IEEE Trans Pattern Anal Mach Intell; 2016 Aug; 38(8):1533-47. PubMed ID: 26829774 [TBL] [Abstract][Full Text] [Related]
14. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. Roetenberg D; Luinge HJ; Baten CT; Veltink PH IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):395-405. PubMed ID: 16200762 [TBL] [Abstract][Full Text] [Related]
15. Human pose recovery using wireless inertial measurement units. Lin JF; Kulić D Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667 [TBL] [Abstract][Full Text] [Related]
16. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. Sabatini AM IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938 [TBL] [Abstract][Full Text] [Related]
17. Accurate estimation of human body orientation from RGB-D sensors. Liu W; Zhang Y; Tang S; Tang J; Hong R; Li J IEEE Trans Cybern; 2013 Oct; 43(5):1442-52. PubMed ID: 23893759 [TBL] [Abstract][Full Text] [Related]
18. Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry. Lee B; Han J; Baek HJ; Shin JH; Park KS; Yi WJ Physiol Meas; 2010 Dec; 31(12):1585-603. PubMed ID: 20980715 [TBL] [Abstract][Full Text] [Related]
19. Estimation of IMU and MARG orientation using a gradient descent algorithm. Madgwick SO; Harrison AJ; Vaidyanathan A IEEE Int Conf Rehabil Robot; 2011; 2011():5975346. PubMed ID: 22275550 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach? Wouda FJ; Giuberti M; Bellusci G; Veltink PH Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]