These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26337184)

  • 1. Spinal corollary discharge modulates motion sensing during vertebrate locomotion.
    Chagnaud BP; Banchi R; Simmers J; Straka H
    Nat Commun; 2015 Sep; 6():7982. PubMed ID: 26337184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands.
    Lunsford ET; Skandalis DA; Liao JC
    J Neurophysiol; 2019 Dec; 122(6):2438-2448. PubMed ID: 31642405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor corollary activation of trigeminal motoneurons: coupling of discrete motor behaviors.
    Hänzi S; Banchi R; Straka H; Chagnaud BP
    J Exp Biol; 2015 Jun; 218(Pt 11):1748-58. PubMed ID: 26041033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling.
    Chagnaud BP; Simmers J; Straka H
    Biol Cybern; 2012 Dec; 106(11-12):669-79. PubMed ID: 23179256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of locomotor efference copy in vertebrate gaze stabilization.
    Straka H; Lambert FM; Simmers J
    Front Neural Circuits; 2022; 16():1040070. PubMed ID: 36569798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor Behavior Selectively Inhibits Hair Cells Activated by Forward Motion in the Lateral Line of Zebrafish.
    Pichler P; Lagnado L
    Curr Biol; 2020 Jan; 30(1):150-157.e3. PubMed ID: 31866371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis.
    von Uckermann G; Lambert FM; Combes D; Straka H; Simmers J
    J Exp Biol; 2016 Apr; 219(Pt 8):1110-21. PubMed ID: 27103674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus frogs.
    von Uckermann G; Le Ray D; Combes D; Straka H; Simmers J
    J Neurosci; 2013 Mar; 33(10):4253-64. PubMed ID: 23467343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective.
    Chagnaud BP; Engelmann J; Fritzsch B; Glover JC; Straka H
    Brain Behav Evol; 2017; 90(2):98-116. PubMed ID: 28988233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The early development and physiology of
    Saccomanno V; Love H; Sylvester A; Li WC
    J Neurophysiol; 2021 Nov; 126(5):1814-1830. PubMed ID: 34705593
    [No Abstract]   [Full Text] [Related]  

  • 11. Conservation of locomotion-induced oculomotor activity through evolution in mammals.
    França de Barros F; Bacqué-Cazenave J; Taillebuis C; Courtand G; Manuel M; Bras H; Tagliabue M; Combes D; Lambert FM; Beraneck M
    Curr Biol; 2022 Jan; 32(2):453-461.e4. PubMed ID: 34856124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion.
    Lambert FM; Combes D; Simmers J; Straka H
    Curr Biol; 2012 Sep; 22(18):1649-58. PubMed ID: 22840517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving or being moved: that makes a difference.
    Straka H; Chagnaud BP
    J Neurol; 2017 Oct; 264(Suppl 1):28-33. PubMed ID: 28271408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Lambert FM; Combes D
    Front Neural Circuits; 2018; 12():95. PubMed ID: 30420798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications of locomotor pattern underlying escape behavior in the lamprey.
    Islam SS; Zelenin PV
    J Neurophysiol; 2008 Jan; 99(1):297-307. PubMed ID: 18003880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor efference copy signaling and gaze control: An evolutionary perspective.
    Lambert FM; Beraneck M; Straka H; Simmers J
    Curr Opin Neurobiol; 2023 Oct; 82():102761. PubMed ID: 37604066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.
    Beyeler A; Rao G; Ladepeche L; Jacques A; Simmers J; Le Ray D
    PLoS One; 2013; 8(8):e71013. PubMed ID: 23951071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotion-induced ocular motor behavior in larval Xenopus is developmentally tuned by visuo-vestibular reflexes.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Straka H; Combes D; Lambert FM
    Nat Commun; 2022 May; 13(1):2957. PubMed ID: 35618719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanosensory neurons control the timing of spinal microcircuit selection during locomotion.
    Knafo S; Fidelin K; Prendergast A; Tseng PB; Parrin A; Dickey C; Böhm UL; Figueiredo SN; Thouvenin O; Pascal-Moussellard H; Wyart C
    Elife; 2017 Jun; 6():. PubMed ID: 28623664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.