These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279 [TBL] [Abstract][Full Text] [Related]
4. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Weller DM; Landa BB; Mavrodi OV; Schroeder KL; De La Fuente L; Blouin Bankhead S; Allende Molar R; Bonsall RF; Mavrodi DV; Thomashow LS Plant Biol (Stuttg); 2007 Jan; 9(1):4-20. PubMed ID: 17058178 [TBL] [Abstract][Full Text] [Related]
5. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Mavrodi OV; Mavrodi DV; Weller DM; Thomashow LS Appl Environ Microbiol; 2006 Nov; 72(11):7111-22. PubMed ID: 16936061 [TBL] [Abstract][Full Text] [Related]
6. Quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere by real-time PCR. Mavrodi OV; Mavrodi DV; Thomashow LS; Weller DM Appl Environ Microbiol; 2007 Sep; 73(17):5531-8. PubMed ID: 17630311 [TBL] [Abstract][Full Text] [Related]
7. Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. Landa BB; Mavrodi OV; Schroeder KL; Allende-Molar R; Weller DM FEMS Microbiol Ecol; 2006 Mar; 55(3):351-68. PubMed ID: 16466375 [TBL] [Abstract][Full Text] [Related]
8. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Mazzola M; Funnell DL; Raaijmakers JM Microb Ecol; 2004 Oct; 48(3):338-48. PubMed ID: 15692854 [TBL] [Abstract][Full Text] [Related]
9. Domestication caused taxonomical and functional shifts in the wheat rhizosphere microbiota, and weakened the natural bacterial biocontrol against fungal pathogens. Abdullaeva Y; Ratering S; Rosado-Porto D; Ambika Manirajan B; Glatt A; Schnell S; Cardinale M Microbiol Res; 2024 Apr; 281():127601. PubMed ID: 38218094 [TBL] [Abstract][Full Text] [Related]
10. Interplay between wheat cultivars, biocontrol pseudomonads, and soil. Meyer JB; Lutz MP; Frapolli M; Péchy-Tarr M; Rochat L; Keel C; Défago G; Maurhofer M Appl Environ Microbiol; 2010 Sep; 76(18):6196-204. PubMed ID: 20675454 [TBL] [Abstract][Full Text] [Related]
11. Analogous wheat root rhizosphere microbial successions in field and greenhouse trials in the presence of biocontrol agents Paenibacillus peoriae SP9 and Streptomyces fulvissimus FU14. Araujo R; Dunlap C; Franco CMM Mol Plant Pathol; 2020 May; 21(5):622-635. PubMed ID: 32056349 [TBL] [Abstract][Full Text] [Related]
12. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Raaijmakers JM; Weller DM Appl Environ Microbiol; 2001 Jun; 67(6):2545-54. PubMed ID: 11375162 [TBL] [Abstract][Full Text] [Related]
13. Wheat-associated microbiota and their correlation with stripe rust reaction. Dai Y; Yang F; Zhang L; Xu Z; Fan X; Tian Y; Wang T J Appl Microbiol; 2020 Feb; 128(2):544-555. PubMed ID: 31606919 [TBL] [Abstract][Full Text] [Related]
14. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Chen S; Waghmode TR; Sun R; Kuramae EE; Hu C; Liu B Microbiome; 2019 Oct; 7(1):136. PubMed ID: 31640813 [TBL] [Abstract][Full Text] [Related]
15. Evolution of bacterial communities in the wheat crop rhizosphere. Donn S; Kirkegaard JA; Perera G; Richardson AE; Watt M Environ Microbiol; 2015 Mar; 17(3):610-21. PubMed ID: 24628845 [TBL] [Abstract][Full Text] [Related]
16. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Du C; Xu R; Zhao X; Liu Y; Zhou X; Zhang W; Zhou X; Hu N; Zhang Y; Sun Z; Wang Z Appl Microbiol Biotechnol; 2023 Dec; 107(23):7347-7364. PubMed ID: 37747613 [TBL] [Abstract][Full Text] [Related]
17. Differential Response of Wheat Cultivars to Pseudomonas brassicacearum and Take-All Decline Soil. Yang M; Mavrodi DV; Thomashow LS; Weller DM Phytopathology; 2018 Dec; 108(12):1363-1372. PubMed ID: 29905506 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the microbial communities in wheat tissues and rhizosphere soil caused by dwarf bunt of wheat. Xu T; Jiang W; Qin D; Liu T; Zhang J; Chen W; Gao L Sci Rep; 2021 Mar; 11(1):5773. PubMed ID: 33707584 [TBL] [Abstract][Full Text] [Related]
19. Changes in structure and assembly of a species-rich soil natural community with contrasting nutrient availability upon establishment of a plant-beneficial Pseudomonas in the wheat rhizosphere. Garrido-Sanz D; Čaušević S; Vacheron J; Heiman CM; Sentchilo V; van der Meer JR; Keel C Microbiome; 2023 Sep; 11(1):214. PubMed ID: 37770950 [TBL] [Abstract][Full Text] [Related]
20. Influence of host plant genotype, presence of a pathogen, and coinoculation with Pseudomonas fluorescens strains on the rhizosphere expression of hydrogen cyanide- and 2,4-diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0. Jamali F; Sharifi-Tehrani A; Lutz MP; Maurhofer M Microb Ecol; 2009 Feb; 57(2):267-75. PubMed ID: 19030916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]