These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 26337499)
21. Wave-like distribution patterns of gfp-marked Pseudomonas fluorescens along roots of wheat plants grown in two soils. van Bruggen AH; Semenov AM; Zelenev VV; Semenov AV; Raaijmakers JM; Sayler RJ; de Vos O Microb Ecol; 2008 Apr; 55(3):466-75. PubMed ID: 17934689 [TBL] [Abstract][Full Text] [Related]
22. Changes in root-associated fungal communities in Triticum aestivum ssp. spelta L. and Triticum aestivum ssp. vulgare L. under drought stress and in various soil processing. Salamon S; Mikołajczak K; Błaszczyk L; Ratajczak K; Sulewska H PLoS One; 2020; 15(10):e0240037. PubMed ID: 33021992 [TBL] [Abstract][Full Text] [Related]
23. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA). Parejko JA; Mavrodi DV; Mavrodi OV; Weller DM; Thomashow LS Microb Ecol; 2012 Jul; 64(1):226-41. PubMed ID: 22383119 [TBL] [Abstract][Full Text] [Related]
24. Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Spor A; Roucou A; Mounier A; Bru D; Breuil MC; Fort F; Vile D; Roumet P; Philippot L; Violle C Sci Rep; 2020 Jul; 10(1):12234. PubMed ID: 32699344 [TBL] [Abstract][Full Text] [Related]
25. Unveiling the Wheat Microbiome under Varied Agricultural Field Conditions. Jaiswal S; Aneja B; Jagannadham J; Pandey B; Chhokar RS; Gill SC; Ahlawat OP; Kumar A; Angadi UB; Rai A; Tiwari R; Iquebal MA; Kumar D Microbiol Spectr; 2022 Dec; 10(6):e0263322. PubMed ID: 36445165 [TBL] [Abstract][Full Text] [Related]
26. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest. Yang Z; Yang W; Li S; Hao J; Su Z; Sun M; Gao Z; Zhang C PLoS One; 2016; 11(3):e0150618. PubMed ID: 26934044 [TBL] [Abstract][Full Text] [Related]
27. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairies. Ellouze W; Hamel C; Singh AK; Mishra V; DePauw RM; Knox RE Can J Microbiol; 2018 Aug; 64(8):527-536. PubMed ID: 29633625 [TBL] [Abstract][Full Text] [Related]
28. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. McSpadden Gardener BB; Weller DM Appl Environ Microbiol; 2001 Oct; 67(10):4414-25. PubMed ID: 11571137 [TBL] [Abstract][Full Text] [Related]
29. Impact of biocontrol agents Pseudomonas fluorescens CHA0 and its genetically modified derivatives on the diversity of culturable fungi in the rhizosphere of mungbean. Shaukat SS; Siddiqui IA J Appl Microbiol; 2003; 95(5):1039-48. PubMed ID: 14633033 [TBL] [Abstract][Full Text] [Related]
30. Life in earth - the root microbiome to the rescue? Mauchline TH; Malone JG Curr Opin Microbiol; 2017 Jun; 37():23-28. PubMed ID: 28437662 [TBL] [Abstract][Full Text] [Related]
31. Wheat dwarfing influences selection of the rhizosphere microbiome. Kavamura VN; Robinson RJ; Hughes D; Clark I; Rossmann M; Melo IS; Hirsch PR; Mendes R; Mauchline TH Sci Rep; 2020 Jan; 10(1):1452. PubMed ID: 31996781 [TBL] [Abstract][Full Text] [Related]
32. Characterizing rhizosphere microbiota of peanut (Arachis hypogaea L.) from pre-sowing to post-harvest of crop under field conditions. Hinsu AT; Panchal KJ; Pandit RJ; Koringa PG; Kothari RK Sci Rep; 2021 Aug; 11(1):17457. PubMed ID: 34465845 [TBL] [Abstract][Full Text] [Related]
33. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2]. Wang P; Hu Z; Li F Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998 [TBL] [Abstract][Full Text] [Related]
34. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations. Wang F; Zhang H; Liu H; Wu C; Wan Y; Zhu L; Yang J; Cai P; Chen J; Ge T Microbiome; 2024 Oct; 12(1):200. PubMed ID: 39407339 [TBL] [Abstract][Full Text] [Related]
35. Cover crops restore declining soil properties and suppress bacterial wilt by regulating rhizosphere bacterial communities and improving soil nutrient contents. Qi G; Chen S; Ke L; Ma G; Zhao X Microbiol Res; 2020 Sep; 238():126505. PubMed ID: 32516644 [TBL] [Abstract][Full Text] [Related]
36. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826 [TBL] [Abstract][Full Text] [Related]
37. Identification of microbial signatures linked to oilseed rape yield decline at the landscape scale. Hilton S; Picot E; Schreiter S; Bass D; Norman K; Oliver AE; Moore JD; Mauchline TH; Mills PR; Teakle GR; Clark IM; Hirsch PR; van der Gast CJ; Bending GD Microbiome; 2021 Jan; 9(1):19. PubMed ID: 33482913 [TBL] [Abstract][Full Text] [Related]
38. The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Khan N; Bano A; Babar MDA Arch Microbiol; 2019 Aug; 201(6):769-785. PubMed ID: 30843087 [TBL] [Abstract][Full Text] [Related]
39. Spatial and temporal dynamics of the bacterial community under experimental warming in field-grown wheat. Wang J; Chen S; Sun R; Liu B; Waghmode T; Hu C PeerJ; 2023; 11():e15428. PubMed ID: 37334112 [TBL] [Abstract][Full Text] [Related]
40. Assessment of genotypic diversity of antibiotic-producing pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Bergsma-Vlami M; Prins ME; Staats M; Raaijmakers JM Appl Environ Microbiol; 2005 Feb; 71(2):993-1003. PubMed ID: 15691958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]