These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26337704)

  • 1. Origin and dynamics of vortex rings in drop splashing.
    Lee JS; Park SJ; Lee JH; Weon BM; Fezzaa K; Je JH
    Nat Commun; 2015 Sep; 6():8187. PubMed ID: 26337704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. von Kármán vortex street within an impacting drop.
    Thoraval MJ; Takehara K; Etoh TG; Popinet S; Ray P; Josserand C; Zaleski S; Thoroddsen ST
    Phys Rev Lett; 2012 Jun; 108(26):264506. PubMed ID: 23004991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross-Pitaevskii equation.
    Krstulovic G; Brachet M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066311. PubMed ID: 21797481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vortex-ring-induced large bubble entrainment during drop impact.
    Thoraval MJ; Li Y; Thoroddsen ST
    Phys Rev E; 2016 Mar; 93(3):033128. PubMed ID: 27078468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of circular arrangements of vorticity in two dimensions.
    Swaminathan RV; Ravichandran S; Perlekar P; Govindarajan R
    Phys Rev E; 2016 Jul; 94(1-1):013105. PubMed ID: 27575215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock wave formation from head-on collision of two subsonic vortex rings.
    Bauer RL; Thomas CJ; Baker EVP; Johnson EM; Williams KR; Langenderfer MJ; Johnson CE
    Sci Rep; 2022 May; 12(1):7492. PubMed ID: 35523817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards High-Quality Visualization of Superfluid Vortices.
    Guo Y; Liu X; Xiong C; Xu X; Fu CW
    IEEE Trans Vis Comput Graph; 2018 Aug; 24(8):2440-2455. PubMed ID: 28650819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.
    Fisher SN; Jackson MJ; Sergeev YA; Tsepelin V
    Proc Natl Acad Sci U S A; 2014 Mar; 111 Suppl 1(Suppl 1):4659-66. PubMed ID: 24704872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of volcanic vortex rings.
    Pulvirenti F; Scollo S; Ferlito C; Schwandner FM
    Sci Rep; 2023 Feb; 13(1):2369. PubMed ID: 36759524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.
    Dominici L; Dagvadorj G; Fellows JM; Ballarini D; De Giorgi M; Marchetti FM; Piccirillo B; Marrucci L; Bramati A; Gigli G; Szymańska MH; Sanvitto D
    Sci Adv; 2015 Dec; 1(11):e1500807. PubMed ID: 26665174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow characteristics and formation optimization of vortex ring air supply.
    Cao Z; Wang R; Zhai C; Wang Y; Zhao T; Wu S
    Indoor Air; 2022 Aug; 32(8):e13096. PubMed ID: 36040275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On vortex loops and filaments: three examples of numerical predictions of flows containing vortices.
    Krause E
    Naturwissenschaften; 2003 Jan; 90(1):4-26. PubMed ID: 12545239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady vortices in plasmas and geophysical flows.
    Nycander J
    Chaos; 1994 Jun; 4(2):253-267. PubMed ID: 12780103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-structure interaction simulation of an avian flight model.
    Ruck S; Oertel H
    J Exp Biol; 2010 Dec; 213(Pt 24):4180-92. PubMed ID: 21112999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconnection of colliding vortex rings.
    Chatelain P; Kivotides D; Leonard A
    Phys Rev Lett; 2003 Feb; 90(5):054501. PubMed ID: 12633362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing.
    Thoraval MJ; Schubert J; Karpitschka S; Chanana M; Boyer F; Sandoval-Naval E; Dijksman JF; Snoeijer JH; Lohse D
    Soft Matter; 2021 May; 17(20):5116-5121. PubMed ID: 33972959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of vortex rings for manoeuvrability.
    Gemmell BJ; Troolin DR; Costello JH; Colin SP; Satterlie RA
    J R Soc Interface; 2015 Jul; 12(108):20150389. PubMed ID: 26136226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-doubling characteristics of high-power, ultrafast vortex beams.
    Chaitanya A; Aadhi A; Jabir MV; Samanta GK
    Opt Lett; 2015 Jun; 40(11):2614-7. PubMed ID: 26030571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.