BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 26337748)

  • 1. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection.
    Yuan H; Liu Y; Fales AM; Li YL; Liu J; Vo-Dinh T
    Anal Chem; 2013 Jan; 85(1):208-12. PubMed ID: 23194068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars.
    Yuan H; Fales AM; Khoury CG; Liu J; Vo-Dinh T
    J Raman Spectrosc; 2013 Feb; 44(2):234-239. PubMed ID: 24839346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery.
    Wang Y; Polavarapu L; Liz-Marzán LM
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21798-805. PubMed ID: 24827538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
    Shiohara A; Langer J; Polavarapu L; Liz-Marzán LM
    Nanoscale; 2014 Aug; 6(16):9817-23. PubMed ID: 25027634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.
    Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D
    Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
    D'Hollander A; Mathieu E; Jans H; Vande Velde G; Stakenborg T; Van Dorpe P; Himmelreich U; Lagae L
    Int J Nanomedicine; 2016; 11():3703-14. PubMed ID: 27536107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram.
    Zhu J; Liu MJ; Li JJ; Li X; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold Nanostar Spatial Distribution Impacts the Surface-Enhanced Raman Scattering Detection of Uranyl on Amidoximated Polymers.
    Phan HT; Vinson C; Haes AJ
    Langmuir; 2021 Apr; 37(16):4891-4899. PubMed ID: 33861606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes.
    Jalani G; Cerruti M
    Nanoscale; 2015 Jun; 7(22):9990-7. PubMed ID: 25981393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches.
    Meng X; Dyer J; Huo Y; Jiang C
    Langmuir; 2020 Apr; 36(13):3558-3564. PubMed ID: 32176502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization.
    Khoury CG; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2008; 2008(112):18849-18859. PubMed ID: 23977403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres.
    Indrasekara AS; Thomas R; Fabris L
    Phys Chem Chem Phys; 2015 Sep; 17(33):21133-42. PubMed ID: 25380028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.