These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
825 related articles for article (PubMed ID: 26337787)
1. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy. Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787 [TBL] [Abstract][Full Text] [Related]
2. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Yamamoto K; Iriyama Y; Hirayama T Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. Nomura Y; Yamamoto K; Hirayama T; Ohkawa M; Igaki E; Hojo N; Saitoh K Nano Lett; 2018 Sep; 18(9):5892-5898. PubMed ID: 30130410 [TBL] [Abstract][Full Text] [Related]
4. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Kitta M; Akita T; Maeda Y; Kohyama M Langmuir; 2012 Aug; 28(33):12384-92. PubMed ID: 22839691 [TBL] [Abstract][Full Text] [Related]
5. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
6. Extremely Low Resistance of Li Kawasoko H; Shiraki S; Suzuki T; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2018 Aug; 10(32):27498-27502. PubMed ID: 29989389 [TBL] [Abstract][Full Text] [Related]
7. Direct Observation of a Li-Ionic Space-Charge Layer Formed at an Electrode/Solid-Electrolyte Interface. Nomura Y; Yamamoto K; Hirayama T; Ouchi S; Igaki E; Saitoh K Angew Chem Int Ed Engl; 2019 Apr; 58(16):5292-5296. PubMed ID: 30729632 [TBL] [Abstract][Full Text] [Related]
8. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
9. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. Wu JF; Pang WK; Peterson VK; Wei L; Guo X ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828 [TBL] [Abstract][Full Text] [Related]
10. Electron and Ion Transfer across Interfaces of the NASICON-Type LATP Solid Electrolyte with Electrodes in All-Solid-State Batteries: A Density Functional Theory Study via an Explicit Interface Model. Tian HK; Jalem R; Gao B; Yamamoto Y; Muto S; Sakakura M; Iriyama Y; Tateyama Y ACS Appl Mater Interfaces; 2020 Dec; 12(49):54752-54762. PubMed ID: 33226213 [TBL] [Abstract][Full Text] [Related]
11. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Thangadurai V; Narayanan S; Pinzaru D Chem Soc Rev; 2014 Jul; 43(13):4714-27. PubMed ID: 24681593 [TBL] [Abstract][Full Text] [Related]
12. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes. Kaushik S; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586 [TBL] [Abstract][Full Text] [Related]
13. (7)Li in situ 1D NMR imaging of a lithium ion battery. Klamor S; Zick K; Oerther T; Schappacher FM; Winter M; Brunklaus G Phys Chem Chem Phys; 2015 Feb; 17(6):4458-65. PubMed ID: 25578436 [TBL] [Abstract][Full Text] [Related]
14. Nanoscale controlled Li-insertion reaction induced by scanning electron-beam irradiation in a Li Kitta M; Kohyama M Phys Chem Chem Phys; 2017 May; 19(18):11581-11587. PubMed ID: 28429025 [TBL] [Abstract][Full Text] [Related]
16. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Blanc F; Leskes M; Grey CP Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242 [TBL] [Abstract][Full Text] [Related]
17. Interface Limited Lithium Transport in Solid-State Batteries. Santhanagopalan D; Qian D; McGilvray T; Wang Z; Wang F; Camino F; Graetz J; Dudney N; Meng YS J Phys Chem Lett; 2014 Jan; 5(2):298-303. PubMed ID: 26270703 [TBL] [Abstract][Full Text] [Related]
18. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing. Lee JZ; Wynn TA; Meng YS; Santhanagopalan D J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578496 [TBL] [Abstract][Full Text] [Related]
19. Li-Ions Transport Promoting and Highly Stable Solid-Electrolyte Interface on Si in Multilayer Si/C through Thickness Control. Zhao Y; Wang J; He Q; Shi J; Zhang Z; Men X; Yan D; Wang H ACS Nano; 2019 May; 13(5):5602-5610. PubMed ID: 31013421 [TBL] [Abstract][Full Text] [Related]
20. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]