These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26337963)

  • 21. Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges.
    Barrena R; Pagans El; Artola A; Vázquez F; Sánchez A
    Biodegradation; 2007 Jun; 18(3):257-68. PubMed ID: 16821102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic digestion of tannery waste: semi-continuous and anaerobic sequencing batch reactor processes.
    Zupancic GD; Jemec A
    Bioresour Technol; 2010 Jan; 101(1):26-33. PubMed ID: 19699632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental optimization of chromium recovery from tannery sludge using a life cycle assessment approach.
    Kiliç E; Puig R; Baquero G; Font J; Colak S; Gürler D
    J Hazard Mater; 2011 Aug; 192(1):393-401. PubMed ID: 21684684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of protease activity in hydrolysed extracts from SSF of hair waste by and indigenous consortium of microorganisms.
    Yazid NA; Barrena R; Sánchez A
    Waste Manag; 2016 Mar; 49():420-426. PubMed ID: 26856443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-pelletization of sewage sludge and agricultural wastes.
    Yilmaz E; Wzorek M; Akçay S
    J Environ Manage; 2018 Jun; 216():169-175. PubMed ID: 28943060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ammonia volatilization in soil treated with tannery sludge.
    Martines AM; Nogueira MA; Santos CA; Nakatani AS; Andrade CA; Coscione AR; Cantarella H; Sousa JP; Cardoso EJ
    Bioresour Technol; 2010 Jun; 101(12):4690-6. PubMed ID: 20171093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of lightweight aggregates from mining and industrial wastes.
    González-Corrochano B; Alonso-Azcárate J; Rodas M
    J Environ Manage; 2009 Jun; 90(8):2801-12. PubMed ID: 19386411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A study on the dewatering of industrial waste sludge by fry-drying technology.
    Ohm TI; Chae JS; Kim JE; Kim HK; Moon SH
    J Hazard Mater; 2009 Aug; 168(1):445-50. PubMed ID: 19272710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-gasification and co-combustion of industrial solid waste mixtures and their implications on environmental emissions, as an alternative management.
    Valdés CF; Marrugo GP; Chejne F; Marin-Jaramillo A; Franco-Ocampo J; Norena-Marin L
    Waste Manag; 2020 Jan; 101():54-65. PubMed ID: 31590031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.
    Verma S; Prasad B; Mishra IM
    Environ Technol; 2012; 33(13-15):1789-801. PubMed ID: 22988641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation of wood-based components and dewatering properties of waste activated sludge from pulp and paper industry.
    Kyllönen H; Lehto J; Pirkonen P; Grönroos A; Pakkanen H; Alén R
    Water Sci Technol; 2010; 62(2):387-93. PubMed ID: 20651444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flow operation.
    Leiva MB; Koupaie EH; Eskicioglu C
    Waste Manag; 2014 Oct; 34(10):1860-70. PubMed ID: 25081853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of microemulsions to remove chromium from industrial sludge.
    Castro Dantas TN; Oliveira KR; Dantas Neto AA; Moura MC
    Water Res; 2009 Mar; 43(5):1464-70. PubMed ID: 19171361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge.
    Zhou LX; Fang D; Wang SM; Wong JW; Wang DZ
    Environ Technol; 2005 Mar; 26(3):277-84. PubMed ID: 15881024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Processing of different types of organic wastes through vermicomposting.
    Bharadwaj A
    J Environ Sci Eng; 2011 Jul; 53(3):371-4. PubMed ID: 23029940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic pretreatment and increased solid destruction for vegetable solid waste codigested with cattle slurry.
    Mandachittibabu ; Saravanane R; Sivacoumar R
    J Environ Sci Eng; 2009 Jan; 51(1):67-72. PubMed ID: 21114156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a novel pelletization technique through an extremely high-shear process using a mechanical powder processor to produce high-dose small core granules suitable for film coating.
    Kondo K; Kato A; Niwa T
    Int J Pharm; 2015 Apr; 483(1-2):101-9. PubMed ID: 25681728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applicability of liquid ion exchange to alum recovery from waste stabilization pond sludge.
    Sthapak AK; Killedar DJ; Bhole AG
    J Environ Sci Eng; 2008 Jul; 50(3):227-34. PubMed ID: 19552078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel.
    Wang T; Li Y; Zhang J; Zhao J; Liu Y; Sun L; Liu B; Mao H; Lin Y; Li W; Ju M; Zhu F
    Waste Manag; 2018 Apr; 74():260-266. PubMed ID: 29224974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Starved air combustion-solidification/stabilization of primary chemical sludge from a tannery.
    Swarnalatha S; Ramani K; Karthi AG; Sekaran G
    J Hazard Mater; 2006 Sep; 137(1):304-13. PubMed ID: 16563614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.