These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The mannose transporter complex: an open door for the macromolecular invasion of bacteria. Erni B J Bacteriol; 2006 Oct; 188(20):7036-8. PubMed ID: 17015642 [No Abstract] [Full Text] [Related]
8. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Deutscher J; Francke C; Postma PW Microbiol Mol Biol Rev; 2006 Dec; 70(4):939-1031. PubMed ID: 17158705 [TBL] [Abstract][Full Text] [Related]
9. Regulation of sugar uptake via the multiple sugar metabolism operon by the phosphoenolpyruvate-dependent sugar phosphotransferase transport system of Streptococcus mutans. Cvitkovitch DG; Boyd DA; Hamilton IR Dev Biol Stand; 1995; 85():351-6. PubMed ID: 8586201 [No Abstract] [Full Text] [Related]
10. A model for accelerated uptake and accumulation of sugars arising from phosphorylation at the inner surface of the cell membrane. Naftalin RJ; Smith PM Biochim Biophys Acta; 1987 Feb; 897(1):93-111. PubMed ID: 3026479 [TBL] [Abstract][Full Text] [Related]
11. Regulation of sugar transport in Salmonella typhimurium. Postma PW Ann Microbiol (Paris); 1982; 133(2):261-7. PubMed ID: 7044216 [No Abstract] [Full Text] [Related]
12. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. Vadeboncoeur C; Pelletier M FEMS Microbiol Rev; 1997 Feb; 19(3):187-207. PubMed ID: 9050218 [TBL] [Abstract][Full Text] [Related]
13. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Saier MH; Reizer J J Bacteriol; 1992 Mar; 174(5):1433-8. PubMed ID: 1537788 [No Abstract] [Full Text] [Related]
14. Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Trahan L; Bareil M; Gauthier L; Vadeboncoeur C Caries Res; 1985; 19(1):53-63. PubMed ID: 3856485 [No Abstract] [Full Text] [Related]
15. [Properties of mutants of bacteria belonging to the genus Erwinia devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system]. Datsenko KA; Evtushenko AN; Sergeev KV; Dobrynina OIu; Bol'shakova TN Genetika; 2002 Jul; 38(7):904-10. PubMed ID: 12174582 [TBL] [Abstract][Full Text] [Related]
16. Sialic acid, serendipity, and sugar transport: discovery of the bacterial phosphotransferase system. Roseman S FEMS Microbiol Rev; 1989 Jun; 5(1-2):3-11. PubMed ID: 2699250 [No Abstract] [Full Text] [Related]
17. Inducer exclusion and the regulation of sugar transport. Saier MH; Crasnier M Res Microbiol; 1996; 147(6-7):482-9. PubMed ID: 9084759 [No Abstract] [Full Text] [Related]
18. Genomic analysis of the phosphotransferase system in Clostridium botulinum. Mitchell WJ; Tewatia P; Meaden PG J Mol Microbiol Biotechnol; 2007; 12(1-2):33-42. PubMed ID: 17183209 [TBL] [Abstract][Full Text] [Related]
19. The bacterial phosphotransferase system as a potential vehicle for the entry of novel antibiotics. Parr TR; Saier MH Res Microbiol; 1992 Jun; 143(5):443-7. PubMed ID: 1448620 [TBL] [Abstract][Full Text] [Related]
20. Noncoding RNAs at the membrane. Vanderpool CK; Gottesman S Nat Struct Mol Biol; 2005 Apr; 12(4):285-6. PubMed ID: 15809646 [No Abstract] [Full Text] [Related] [Next] [New Search]