These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 2633801)

  • 21. 2-Hydroxy-5-nitrobenzyl bromide as a specific reagent for tryptophan residues in membrane proteins: bacteriorhodopsin as an example.
    Sabés M; Torres J; Duñach M; Padrós E
    J Biochem Biophys Methods; 1988 Sep; 17(1):17-24. PubMed ID: 3148646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I.
    Faridmoayer A; Scaman CH
    Glycobiology; 2005 Dec; 15(12):1341-8. PubMed ID: 16014748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different manganese binding sites in photosystem II probed by selective chemical modification of histidyl and carboxylic acid residues.
    Magnuson A; Andréasson LE
    Biochemistry; 1997 Mar; 36(11):3254-61. PubMed ID: 9116003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH-induced conformational changes in the soluble manganese-stabilizing protein of photosystem II.
    Weng J; Tan C; Shen JR; Yu Y; Zeng X; Xu C; Ruan K
    Biochemistry; 2004 Apr; 43(16):4855-61. PubMed ID: 15096054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A method of calculation of accessibility to solvent of aromatic amino acid residues of proteins in water-organic mixtures].
    Shevchenko AA; Kost OA
    Biokhimiia; 1996 Dec; 61(12):2092-8. PubMed ID: 9156553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Role of tryptophan in the enzymatic activity of histidine decarboxylase from Micrococcus sp. n].
    Gonchar NA; Grebenshchikova OG; Komarova NV
    Biokhimiia; 1981 Nov; 46(11):1970-80. PubMed ID: 7317525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tyrosine and tryptophan modification monitored by ultraviolet resonance Raman spectroscopy.
    Caswell DS; Spiro TG
    Biochim Biophys Acta; 1986 Sep; 873(1):73-8. PubMed ID: 3091073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of tryptophan modification on the structure and function of a sea snake neurotoxin.
    Allen M; Tu AT
    Mol Pharmacol; 1985 Jan; 27(1):79-85. PubMed ID: 3917546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of membrane-contacting loops of the catalytic domain of cytochrome P450 2C2 by tryptophan fluorescence scanning.
    Ozalp C; Szczesna-Skorupa E; Kemper B
    Biochemistry; 2006 Apr; 45(14):4629-37. PubMed ID: 16584198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Comparative study of laminarinases from marine mollusks using differential UV-spectrophotometry].
    Lakizova IIu; Eliakova LA
    Biokhimiia; 1983 Oct; 48(10):1654-60. PubMed ID: 6639988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational changes of maize and wheat NADP-malic enzyme studied by quenching of protein native fluorescence.
    Spampinato CP; Ferreyra ML; Andreo CS
    Int J Biol Macromol; 2007 Jun; 41(1):64-71. PubMed ID: 17292466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/D-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence.
    Kumar A; Tyagi NK; Kinne RK
    Biophys Chem; 2007 Apr; 127(1-2):69-77. PubMed ID: 17222499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional differentiation of three groups of tyrosine residues by acetylation of N-acetylimidazole in manganese stabilizing protein.
    Zhang F; Gao J; Weng J; Tan C; Ruan K; Xu C; Jiang D
    Biochemistry; 2005 Jan; 44(2):719-25. PubMed ID: 15641798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic study on chemical modification of taka-amylase A. I. Location and role of tryptophan residues.
    Kita Y; Fukazawa M; Nitta Y; Watanabe T
    J Biochem; 1982 Sep; 92(3):653-9. PubMed ID: 6183254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of chemical modification on the cryoprecipitation of monoclonal human cryoglobulin M.
    Kosarev IV; Surovtsev VI; Zav'yalov VP
    Biochim Biophys Acta; 1984 Oct; 790(2):125-31. PubMed ID: 6435676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Occurrence of tryptophan in the enzymically active site of diphtheria toxin fragment A.
    Michel A; Dirkx J
    Biochim Biophys Acta; 1977 Mar; 491(1):286-95. PubMed ID: 849463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational differences between high clotting human alpha-thrombin and nonclotting gamma-thrombin.
    Villanueva GB
    Biochemistry; 1981 Nov; 20(23):6519-25. PubMed ID: 7306521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Quantitative determination of the tryptophan residues modified by 2-hydroxy-5-nitrobenzyl bromide by mercaptoethane sulfonic acid hydrolysis. Application to diphtheria toxin].
    Michel A; Dirkx J
    Arch Int Physiol Biochim; 1976 Apr; 84(2):400-1. PubMed ID: 71065
    [No Abstract]   [Full Text] [Related]  

  • 40. Spectrophotometric estimation of protein concentration in the presence of tryptophan modified by 2-hydroxy-5-nitrobenzyl bromide.
    Malin EL; Greenberg R; Farrell HM
    Anal Biochem; 1985 Feb; 144(2):356-61. PubMed ID: 3922238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.