These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A survey of the specificity and mechanism of 1,6 hexanediol-induced disruption of nuclear transport. Barrientos ECR; Otto TA; Mouton SN; Steen A; Veenhoff LM Nucleus; 2023 Dec; 14(1):2240139. PubMed ID: 37498221 [TBL] [Abstract][Full Text] [Related]
7. Biomechanics of the transport barrier in the nuclear pore complex. Stanley GJ; Fassati A; Hoogenboom BW Semin Cell Dev Biol; 2017 Aug; 68():42-51. PubMed ID: 28506890 [TBL] [Abstract][Full Text] [Related]
8. The selective permeability barrier in the nuclear pore complex. Li C; Goryaynov A; Yang W Nucleus; 2016 Sep; 7(5):430-446. PubMed ID: 27673359 [TBL] [Abstract][Full Text] [Related]
9. The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo. Zeitler B; Weis K J Cell Biol; 2004 Nov; 167(4):583-90. PubMed ID: 15557115 [TBL] [Abstract][Full Text] [Related]
10. Structural dynamics of the nuclear pore complex. Sakiyama Y; Panatala R; Lim RYH Semin Cell Dev Biol; 2017 Aug; 68():27-33. PubMed ID: 28579449 [TBL] [Abstract][Full Text] [Related]
11. Emergence of selectivity and specificity in a coarse-grained model of the nuclear pore complex with sequence-agnostic FG-Nups. Patel MK; Chakrabarti B; Panwar AS Phys Chem Chem Phys; 2023 Dec; 25(48):32824-32836. PubMed ID: 38018404 [TBL] [Abstract][Full Text] [Related]
12. Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions. Tetenbaum-Novatt J; Hough LE; Mironska R; McKenney AS; Rout MP Mol Cell Proteomics; 2012 May; 11(5):31-46. PubMed ID: 22357553 [TBL] [Abstract][Full Text] [Related]
13. Nucleoporins' exclusive amino acid sequence features regulate their transient interaction with and selectivity of cargo complexes in the nuclear pore. Peyro M; Dickson AM; Mofrad MRK Mol Biol Cell; 2021 Nov; 32(21):ar31. PubMed ID: 34473567 [TBL] [Abstract][Full Text] [Related]
14. Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies. Davis LK; Ford IJ; Hoogenboom BW Elife; 2022 Jan; 11():. PubMed ID: 35098921 [TBL] [Abstract][Full Text] [Related]
15. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. Zilman A; Di Talia S; Chait BT; Rout MP; Magnasco MO PLoS Comput Biol; 2007 Jul; 3(7):e125. PubMed ID: 17630825 [TBL] [Abstract][Full Text] [Related]
16. Floppy but not sloppy: Interaction mechanism of FG-nucleoporins and nuclear transport receptors. Aramburu IV; Lemke EA Semin Cell Dev Biol; 2017 Aug; 68():34-41. PubMed ID: 28669824 [TBL] [Abstract][Full Text] [Related]
17. Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics. Wagner RS; Kapinos LE; Marshall NJ; Stewart M; Lim RYH Biophys J; 2015 Feb; 108(4):918-927. PubMed ID: 25692596 [TBL] [Abstract][Full Text] [Related]
18. Nucleoporin's Like Charge Regions Are Major Regulators of FG Coverage and Dynamics Inside the Nuclear Pore Complex. Peyro M; Soheilypour M; Ghavami A; Mofrad MR PLoS One; 2015; 10(12):e0143745. PubMed ID: 26658558 [TBL] [Abstract][Full Text] [Related]
19. The Effect of FG-Nup Phosphorylation on NPC Selectivity: A One-Bead-Per-Amino-Acid Molecular Dynamics Study. Mishra A; Sipma W; Veenhoff LM; Van der Giessen E; Onck PR Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704069 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of nucleocytoplasmic transport through the nuclear pore complex. Tetenbaum-Novatt J; Rout MP Cold Spring Harb Symp Quant Biol; 2010; 75():567-84. PubMed ID: 21447814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]