These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 26338226)

  • 41. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.
    Liyanage W; Nilsson BL
    Langmuir; 2016 Jan; 32(3):787-99. PubMed ID: 26717444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group.
    Suzuki M; Yumoto M; Kimura M; Shirai H; Hanabusa K
    Chemistry; 2003 Jan; 9(1):348-54. PubMed ID: 12506392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Geometrical and conformational preferences of the 9-fluorenylmethoxycarbonyl-amino moiety.
    Broda MA; Mazur L; Kozioł AE; Rzeszotarska B
    J Pept Sci; 2004 Jul; 10(7):448-61. PubMed ID: 15298180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Supramolecular gels formed by amphiphilic low-molecular-weight gelators of N alpha,N epsilon-diacyl-L-lysine derivatives.
    Suzuki M; Yumoto M; Shirai H; Hanabusa K
    Chemistry; 2008; 14(7):2133-44. PubMed ID: 18161708
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles.
    Fleming S; Debnath S; Frederix PW; Hunt NT; Ulijn RV
    Biomacromolecules; 2014 Apr; 15(4):1171-84. PubMed ID: 24568678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-walled carbon nanotubes as near-infrared fluorescent probes for bio-inspired supramolecular self-assembled hydrogels.
    Kleiner S; Wulf V; Bisker G
    J Colloid Interface Sci; 2024 Sep; 670():439-448. PubMed ID: 38772260
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives.
    Abraham BL; Agredo P; Mensah SG; Nilsson BL
    Langmuir; 2022 Dec; 38(50):15494-15505. PubMed ID: 36473193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Probing Gelation and Rheological Behavior of a Self-Assembled Molecular Gel.
    Hashemnejad SM; Kundu S
    Langmuir; 2017 Aug; 33(31):7769-7779. PubMed ID: 28715639
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis, experimental and in silico studies of N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, coupled with CSD data: a survey of interactions in the crystal structures of Fmoc-amino acids.
    Bojarska J; Remko M; Madura ID; Kaczmarek K; Zabrocki J; Wolf WM
    Acta Crystallogr C Struct Chem; 2020 Apr; 76(Pt 4):328-345. PubMed ID: 32229714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-reversible heat-induced gelation of a biocompatible Fmoc-hexapeptide in water.
    Wojciechowski JP; Martin AD; Du EY; Garvey CJ; Nordon RE; Thordarson P
    Nanoscale; 2020 Apr; 12(15):8262-8267. PubMed ID: 32236222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Comprehensive Study on Self-Assembly and Gelation of C
    Hu T; Zhang Z; Hu H; Euston SR; Pan S
    Biomacromolecules; 2020 Feb; 21(2):670-679. PubMed ID: 31794666
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12.
    Shome A; Debnath S; Das PK
    Langmuir; 2008 Apr; 24(8):4280-8. PubMed ID: 18324868
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators.
    Cornwell DJ; Okesola BO; Smith DK
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12461-5. PubMed ID: 25146876
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular Insights into Gelation of Di-Fmoc-l-Lysine in Organic Solvent-Water Mixtures.
    Hashemnejad SM; Huda MM; Rai N; Kundu S
    ACS Omega; 2017 May; 2(5):1864-1874. PubMed ID: 31457548
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A broad-spectrum antibacterial hydrogel based on the synergistic action of Fmoc-phenylalanine and Fmoc-lysine in a co-assembled state.
    Das Gupta B; Halder A; Vijayakanth T; Ghosh N; Konar R; Mukherjee O; Gazit E; Mondal S
    J Mater Chem B; 2024 Aug; 12(34):8444-8453. PubMed ID: 39102005
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles.
    Wang T; Ménard-Moyon C; Bianco A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10532-10544. PubMed ID: 38367060
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogels of halogenated Fmoc-short peptides for potential application in tissue engineering.
    Wang Y; Zhang Z; Xu L; Li X; Chen H
    Colloids Surf B Biointerfaces; 2013 Apr; 104():163-8. PubMed ID: 23314490
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of amide moieties for hydrogelators on gelation property and heating-free pH responsive gel-sol phase transition.
    Morita C; Kawai C; Kikuchi A; Imura Y; Kawai T
    J Oleo Sci; 2012; 61(12):707-13. PubMed ID: 23196871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Organogel-hydrogel transformation by simple removal or inclusion of N-Boc-protection.
    Kar T; Mandal SK; Das PK
    Chemistry; 2011 Dec; 17(52):14952-61. PubMed ID: 22105985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.