These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26338516)

  • 1. A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures.
    Huang PH; Chan CY; Li P; Nama N; Xie Y; Wei CH; Chen Y; Ahmed D; Huang TJ
    Lab Chip; 2015 Nov; 15(21):4166-76. PubMed ID: 26338516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Concentration Gradients Tunable Generator with Adjustable Position of the Acoustically Oscillating Bubbles.
    Liu B; Ma Z; Yang J; Gao G; Liu H
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustofluidic actuation of in situ fabricated microrotors.
    Kaynak M; Ozcelik A; Nama N; Nourhani A; Lammert PE; Crespi VH; Huang TJ
    Lab Chip; 2016 Sep; 16(18):3532-7. PubMed ID: 27466140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sharp-edge-based acoustofluidic chemical signal generator.
    Huang PH; Chan CY; Li P; Wang Y; Nama N; Bachman H; Huang TJ
    Lab Chip; 2018 May; 18(10):1411-1421. PubMed ID: 29668002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A localized surface acoustic wave applied spatiotemporally controllable chemical gradient generator.
    Liang J; Chen K; Xia Y; Gui J; Wu Z; Cui H; Wu Z; Liu W; Zhao X; Guo S
    Biomicrofluidics; 2020 Mar; 14(2):024106. PubMed ID: 32231760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell lysis via acoustically oscillating sharp edges.
    Wang Z; Huang PH; Chen C; Bachman H; Zhao S; Yang S; Huang TJ
    Lab Chip; 2019 Dec; 19(24):4021-4032. PubMed ID: 31720640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustofluidic devices controlled by cell phones.
    Bachman H; Huang PH; Zhao S; Yang S; Zhang P; Fu H; Huang TJ
    Lab Chip; 2018 Jan; 18(3):433-441. PubMed ID: 29302660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures.
    Huang PH; Nama N; Mao Z; Li P; Rufo J; Chen Y; Xie Y; Wei CH; Wang L; Huang TJ
    Lab Chip; 2014 Nov; 14(22):4319-23. PubMed ID: 25188786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acoustofluidic micromixer based on oscillating sidewall sharp-edges.
    Huang PH; Xie Y; Ahmed D; Rufo J; Nama N; Chen Y; Chan CY; Huang TJ
    Lab Chip; 2013 Oct; 13(19):3847-52. PubMed ID: 23896797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open source acoustofluidics.
    Bachman H; Fu H; Huang PH; Tian Z; Embry-Seckler J; Rufo J; Xie Z; Hartman JH; Zhao S; Yang S; Meyer JN; Huang TJ
    Lab Chip; 2019 Jul; 19(14):2404-2414. PubMed ID: 31240285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Chip Tunable Cell Rotation Using Acoustically Oscillating Asymmetrical Microstructures.
    Feng L; Song B; Zhang D; Jiang Y; Arai F
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30441839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles.
    Ahmed D; Chan CY; Lin SC; Muddana HS; Nama N; Benkovic SJ; Huang TJ
    Lab Chip; 2013 Feb; 13(3):328-31. PubMed ID: 23254861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the effects of helical flow in blood vessels using acoustofluidic-based dynamic flow generator.
    Kwak D; Im Y; Nam H; Nam U; Kim S; Kim W; Kim HJ; Park J; Jeon JS
    Acta Biomater; 2024 Mar; 177():216-227. PubMed ID: 38253303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution.
    Zhang W; Song B; Bai X; Jia L; Song L; Guo J; Feng L
    Lab Chip; 2021 Dec; 21(24):4760-4771. PubMed ID: 34632476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Benzopyrene-Induced Lung Inflammatory and Cytotoxic Injury in a Chemical Gradient-Integrated Microfluidic Bronchial Epithelium System.
    Zhang F; Tian C; Liu W; Wang K; Wei Y; Wang H; Wang J; Liu S
    ACS Sens; 2018 Dec; 3(12):2716-2725. PubMed ID: 30507116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures.
    Ozcelik A; Nama N; Huang PH; Kaynak M; McReynolds MR; Hanna-Rose W; Huang TJ
    Small; 2016 Oct; 12(37):5120-5125. PubMed ID: 27515787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins.
    Liu L; Ratner BD; Sage EH; Jiang S
    Langmuir; 2007 Oct; 23(22):11168-73. PubMed ID: 17892312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields.
    An R; Minerick AR
    Langmuir; 2022 May; 38(19):5977-5986. PubMed ID: 35507010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microfluidic lighthouse: an omnidirectional gradient generator.
    Nakajima A; Ishida M; Fujimori T; Wakamoto Y; Sawai S
    Lab Chip; 2016 Nov; 16(22):4382-4394. PubMed ID: 27735954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.