BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26338705)

  • 1. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences.
    Cilli P; Minoprio A; Bossa C; Bignami M; Mazzei F
    J Biol Chem; 2015 Oct; 290(43):26259-69. PubMed ID: 26338705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine.
    Sassa A; Çağlayan M; Rodriguez Y; Beard WA; Wilson SH; Nohmi T; Honma M; Yasui M
    J Biol Chem; 2016 Nov; 291(46):24314-24323. PubMed ID: 27660390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β.
    Smith MR; Alnajjar KS; Hoitsma NM; Sweasy JB; Freudenthal BD
    J Biol Chem; 2020 Feb; 295(6):1613-1622. PubMed ID: 31892517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability.
    Cilli P; Ventura I; Minoprio A; Meccia E; Martire A; Wilson SH; Bignami M; Mazzei F
    Nucleic Acids Res; 2016 Jun; 44(11):5190-203. PubMed ID: 26980281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribonucleotides as nucleotide excision repair substrates.
    Cai Y; Geacintov NE; Broyde S
    DNA Repair (Amst); 2014 Jan; 13():55-60. PubMed ID: 24290807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome.
    Fu I; Smith DJ; Broyde S
    DNA Repair (Amst); 2019 Jan; 73():155-163. PubMed ID: 30522887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlike the
    Malfatti MC; Henneke G; Balachander S; Koh KD; Newnam G; Uehara R; Crouch RJ; Storici F; Tell G
    J Biol Chem; 2019 Aug; 294(35):13061-13072. PubMed ID: 31300556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair.
    Crespan E; Furrer A; Rösinger M; Bertoletti F; Mentegari E; Chiapparini G; Imhof R; Ziegler N; Sturla SJ; Hübscher U; van Loon B; Maga G
    Nat Commun; 2016 Feb; 7():10805. PubMed ID: 26917111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redundancy in ribonucleotide excision repair: Competition, compensation, and cooperation.
    Vaisman A; Woodgate R
    DNA Repair (Amst); 2015 May; 29():74-82. PubMed ID: 25753809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of oxidized purine processing on strand directionality of mismatch repair.
    Repmann S; Olivera-Harris M; Jiricny J
    J Biol Chem; 2015 Apr; 290(16):9986-99. PubMed ID: 25694431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transesterification Reaction and the Repair of Embedded Ribonucleotides in DNA Are Suppressed upon the Assembly of DNA into Nucleosome Core Particles †.
    Ren M; Cheng Y; Duan Q; Zhou C
    Chem Res Toxicol; 2019 May; 32(5):926-934. PubMed ID: 30990021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair.
    Vaisman A; McDonald JP; Huston D; Kuban W; Liu L; Van Houten B; Woodgate R
    PLoS Genet; 2013 Nov; 9(11):e1003878. PubMed ID: 24244177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel alternative ribonucleotide excision repair pathways in human cells by DDX3X and specialized DNA polymerases.
    Riva V; Garbelli A; Casiraghi F; Arena F; Trivisani CI; Gagliardi A; Bini L; Schroeder M; Maffia A; Sabbioneda S; Maga G
    Nucleic Acids Res; 2020 Nov; 48(20):11551-11565. PubMed ID: 33137198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both R-loop removal and ribonucleotide excision repair activities of RNase H2 contribute substantially to chromosome stability.
    Cornelio DA; Sedam HN; Ferrarezi JA; Sampaio NM; Argueso JL
    DNA Repair (Amst); 2017 Apr; 52():110-114. PubMed ID: 28268090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase.
    Cerritelli SM; Iranzo J; Sharma S; Chabes A; Crouch RJ; Tollervey D; El Hage A
    Nucleic Acids Res; 2020 May; 48(8):4274-4297. PubMed ID: 32187369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity.
    Mentegari E; Crespan E; Bavagnoli L; Kissova M; Bertoletti F; Sabbioneda S; Imhof R; Sturla SJ; Nilforoushan A; Hübscher U; van Loon B; Maga G
    Nucleic Acids Res; 2017 Mar; 45(5):2600-2614. PubMed ID: 27994034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ.
    Gosavi RA; Moon AF; Kunkel TA; Pedersen LC; Bebenek K
    Nucleic Acids Res; 2012 Aug; 40(15):7518-27. PubMed ID: 22584622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The presence of ribonucleotides in DNA has an ambiguous impact on the maintenance of genetic stability].
    Łazowski K; Makiela-Dzbenska K
    Postepy Biochem; 2019 Jun; 65(2):143-152. PubMed ID: 31642653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.