These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26338976)
1. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Jónasdóttir SH; Visser AW; Richardson K; Heath MR Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12122-6. PubMed ID: 26338976 [TBL] [Abstract][Full Text] [Related]
2. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Brun P; Stamieszkin K; Visser AW; Licandro P; Payne MR; Kiørboe T Nat Ecol Evol; 2019 Mar; 3(3):416-423. PubMed ID: 30742109 [TBL] [Abstract][Full Text] [Related]
3. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Wilson RJ; Banas NS; Heath MR; Speirs DC Glob Chang Biol; 2016 Oct; 22(10):3332-40. PubMed ID: 26990351 [TBL] [Abstract][Full Text] [Related]
4. Revisiting carbon flux through the ocean's twilight zone. Buesseler KO; Lamborg CH; Boyd PW; Lam PJ; Trull TW; Bidigare RR; Bishop JK; Casciotti KL; Dehairs F; Elskens M; Honda M; Karl DM; Siegel DA; Silver MW; Steinberg DK; Valdes J; Van Mooy B; Wilson S Science; 2007 Apr; 316(5824):567-70. PubMed ID: 17463282 [TBL] [Abstract][Full Text] [Related]
5. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Marsay CM; Sanders RJ; Henson SA; Pabortsava K; Achterberg EP; Lampitt RS Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1089-94. PubMed ID: 25561526 [TBL] [Abstract][Full Text] [Related]
6. Predation risk alters life history strategies in an oceanic copepod. Kvile KØ; Altin D; Thommesen L; Titelman J Ecology; 2021 Jan; 102(1):e03214. PubMed ID: 33001438 [TBL] [Abstract][Full Text] [Related]
7. High dispersal potential has maintained long-term population stability in the North Atlantic copepod Calanus finmarchicus. Provan J; Beatty GE; Keating SL; Maggs CA; Savidge G Proc Biol Sci; 2009 Jan; 276(1655):301-7. PubMed ID: 18812293 [TBL] [Abstract][Full Text] [Related]
8. Ocean carbon sequestration: Particle fragmentation by copepods as a significant unrecognised factor?: Explicitly representing the role of copepods in biogeochemical models may fundamentally improve understanding of future ocean carbon storage. Mayor DJ; Gentleman WC; Anderson TR Bioessays; 2020 Dec; 42(12):e2000149. PubMed ID: 33174616 [TBL] [Abstract][Full Text] [Related]
9. Carbon sequestration by multiple biological pump pathways in a coastal upwelling biome. Stukel MR; Irving JP; Kelly TB; Ohman MD; Fender CK; Yingling N Nat Commun; 2023 Apr; 14(1):2024. PubMed ID: 37041189 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of the lipid content and biomass of Calanus finmarchicus (copepodite V) in a Norwegian Fjord. Bergvik M; Leiknes O; Altin D; Dahl KR; Olsen Y Lipids; 2012 Sep; 47(9):881-95. PubMed ID: 22825841 [TBL] [Abstract][Full Text] [Related]
11. Changes in zooplankton communities from epipelagic to lower mesopelagic waters. Stefanoudis PV; Rivers M; Ford H; Yashayaev IM; Rogers AD; Woodall LC Mar Environ Res; 2019 Apr; 146():1-11. PubMed ID: 30879698 [TBL] [Abstract][Full Text] [Related]
12. Multi-faceted particle pumps drive carbon sequestration in the ocean. Boyd PW; Claustre H; Levy M; Siegel DA; Weber T Nature; 2019 Apr; 568(7752):327-335. PubMed ID: 30996317 [TBL] [Abstract][Full Text] [Related]
13. Decadal changes in zooplankton of the Northeast U.S. continental shelf. Bi H; Ji R; Liu H; Jo YH; Hare JA PLoS One; 2014; 9(1):e87720. PubMed ID: 24498177 [TBL] [Abstract][Full Text] [Related]
14. Coccolithovirus facilitation of carbon export in the North Atlantic. Laber CP; Hunter JE; Carvalho F; Collins JR; Hunter EJ; Schieler BM; Boss E; More K; Frada M; Thamatrakoln K; Brown CM; Haramaty L; Ossolinski J; Fredricks H; Nissimov JI; Vandzura R; Sheyn U; Lehahn Y; Chant RJ; Martins AM; Coolen MJL; Vardi A; DiTullio GR; Van Mooy BAS; Bidle KD Nat Microbiol; 2018 May; 3(5):537-547. PubMed ID: 29531367 [TBL] [Abstract][Full Text] [Related]
15. Influence of Seasonal Variability in Flux Attenuation on Global Organic Carbon Fluxes and Nutrient Distributions. de Melo Viríssimo F; Martin AP; Henson SA Global Biogeochem Cycles; 2022 Feb; 36(2):e2021GB007101. PubMed ID: 35866103 [TBL] [Abstract][Full Text] [Related]
16. The North Atlantic Ecosystem, from Plankton to Whales. Pershing AJ; Stamieszkin K Ann Rev Mar Sci; 2020 Jan; 12():339-359. PubMed ID: 31226030 [TBL] [Abstract][Full Text] [Related]
17. Meta-ecosystems and biological energy transport from ocean to coast: the ecological importance of herring migration. Varpe O; Fiksen O; Slotte A Oecologia; 2005 Dec; 146(3):443-51. PubMed ID: 16195881 [TBL] [Abstract][Full Text] [Related]
18. Functional genomics resources for the North Atlantic copepod, Calanus finmarchicus: EST database and physiological microarray. Lenz PH; Unal E; Hassett RP; Smith CM; Bucklin A; Christie AE; Towle DW Comp Biochem Physiol Part D Genomics Proteomics; 2012 Jun; 7(2):110-23. PubMed ID: 22277925 [TBL] [Abstract][Full Text] [Related]
19. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Weber T; Cram JA; Leung SW; DeVries T; Deutsch C Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8606-11. PubMed ID: 27457946 [TBL] [Abstract][Full Text] [Related]
20. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae). Pedersen SA; Våge VT; Olsen AJ; Hammer KM; Altin D J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]