These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26339031)

  • 1. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages.
    Schumacher MA; Tonthat NK; Lee J; Rodriguez-Castañeda FA; Chinnam NB; Kalliomaa-Sanford AK; Ng IW; Barge MT; Shaw PL; Barillà D
    Science; 2015 Sep; 349(6252):1120-4. PubMed ID: 26339031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome segregation in Archaea: SegA- and SegB-DNA complex structures provide insights into segrosome assembly.
    Yen CY; Lin MG; Chen BW; Ng IW; Read N; Kabli AF; Wu CT; Shen YY; Chen CH; Barillà D; Sun YJ; Hsiao CD
    Nucleic Acids Res; 2021 Dec; 49(22):13150-13164. PubMed ID: 34850144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chromosome replication machinery of the archaeon Sulfolobus solfataricus.
    Duggin IG; Bell SD
    J Biol Chem; 2006 Jun; 281(22):15029-32. PubMed ID: 16467299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governing Walker-box DNA segregation.
    Zhang H; Schumacher MA
    Genes Dev; 2017 Mar; 31(5):481-492. PubMed ID: 28373206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple origins of replication in archaea.
    Kelman LM; Kelman Z
    Trends Microbiol; 2004 Sep; 12(9):399-401. PubMed ID: 15337158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and Functional Compartmentalization of Archaeal Chromosomes.
    Takemata N; Samson RY; Bell SD
    Cell; 2019 Sep; 179(1):165-179.e18. PubMed ID: 31539494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA replication in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Dionne I; Robinson NP; McGeoch AT; Marsh VL; Reddish A; Bell SD
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):674-6. PubMed ID: 12773180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes.
    Robinson NP; Bell SD
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5806-11. PubMed ID: 17392430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focus on the centre: the role of chromatin on the regulation of centromere identity and function.
    Torras-Llort M; Moreno-Moreno O; Azorín F
    EMBO J; 2009 Aug; 28(16):2337-48. PubMed ID: 19629040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ssh10b2 differs from its paralogue Ssh10b in cellular abundance and the ability to constrain DNA supercoils].
    Guo R; Xue H; Huo XF; Xu DY; Hu JC
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):323-7. PubMed ID: 16736601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth.
    López-García P; Knapp S; Ladenstein R; Forterre P
    Nucleic Acids Res; 1998 May; 26(10):2322-8. PubMed ID: 9580681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes.
    Peng X; Brügger K; Shen B; Chen L; She Q; Garrett RA
    J Bacteriol; 2003 Apr; 185(8):2410-7. PubMed ID: 12670964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic centromere nucleation by CENP--a in fission yeast.
    Gonzalez M; He H; Dong Q; Sun S; Li F
    Genetics; 2014 Dec; 198(4):1433-46. PubMed ID: 25298518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of xenopus CENP-A and an associated centromeric DNA repeat.
    Edwards NS; Murray AW
    Mol Biol Cell; 2005 Apr; 16(4):1800-10. PubMed ID: 15673610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome segregation in Archaea mediated by a hybrid DNA partition machine.
    Kalliomaa-Sanford AK; Rodriguez-Castañeda FA; McLeod BN; Latorre-Roselló V; Smith JH; Reimann J; Albers SV; Barillà D
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3754-9. PubMed ID: 22355141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Maruyama H; Shin M; Oda T; Matsumi R; Ohniwa RL; Itoh T; Shirahige K; Imanaka T; Atomi H; Yoshimura SH; Takeyasu K
    Mol Biol Cell; 2011 Feb; 22(3):386-98. PubMed ID: 21148291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation.
    Schumacher MA
    Biochem J; 2008 May; 412(1):1-18. PubMed ID: 18426389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercoiled DNA and non-equilibrium formation of protein complexes: A quantitative model of the nucleoprotein ParBS partition complex.
    Walter JC; Lepage T; Dorignac J; Geniet F; Parmeggiani A; Palmeri J; Bouet JY; Junier I
    PLoS Comput Biol; 2021 Apr; 17(4):e1008869. PubMed ID: 33861734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale architecture of archaeal chromosomes.
    Takemata N; Bell SD
    Mol Cell; 2021 Feb; 81(3):473-487.e6. PubMed ID: 33382983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archaeal cell cycle progress.
    Lundgren M; Bernander R
    Curr Opin Microbiol; 2005 Dec; 8(6):662-8. PubMed ID: 16249118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.