These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26339280)

  • 1. Improved DNase-seq protocol facilitates high resolution mapping of DNase I hypersensitive sites in roots in Arabidopsis thaliana.
    Cumbie JS; Filichkin SA; Megraw M
    Plant Methods; 2015; 11():42. PubMed ID: 26339280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing.
    Filichkin SA; Megraw M
    Methods Mol Biol; 2017; 1629():141-154. PubMed ID: 28623584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Identification of DNase I Hypersensitive Sites in Plants.
    Wang Y; Wang K
    Curr Protoc; 2021 Jun; 1(6):e148. PubMed ID: 34101388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana.
    Zhao H; Zhang W; Zhang T; Lin Y; Hu Y; Fang C; Jiang J
    Genome Biol; 2020 Feb; 21(1):24. PubMed ID: 32014062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato.
    Li R; Cui X
    Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.
    Cooper J; Ding Y; Song J; Zhao K
    Nat Protoc; 2017 Nov; 12(11):2342-2354. PubMed ID: 29022941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Identification of Regulatory DNA Elements in Crop Plants.
    Li Z; Wang K
    Methods Mol Biol; 2020; 2072():85-99. PubMed ID: 31541440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale mapping of DNase I hypersensitivity.
    John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA
    Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Analysis of Chromatin Accessibility in Arabidopsis Infected with Pseudomonas syringae.
    Bordiya Y; Kang HG
    Methods Mol Biol; 2017; 1578():263-272. PubMed ID: 28220432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin.
    Kodama Y; Nagaya S; Shinmyo A; Kato K
    Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS).
    Crawford GE; Holt IE; Whittle J; Webb BD; Tai D; Davis S; Margulies EH; Chen Y; Bernat JA; Ginsburg D; Zhou D; Luo S; Vasicek TJ; Daly MJ; Wolfsberg TG; Collins FS
    Genome Res; 2006 Jan; 16(1):123-31. PubMed ID: 16344561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq).
    Rhie SK; Schreiner S; Farnham PJ
    Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel transcription factors in osteoclast differentiation using genome-wide analysis of open chromatin determined by DNase-seq.
    Inoue K; Imai Y
    J Bone Miner Res; 2014 Aug; 29(8):1823-32. PubMed ID: 24677342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq.
    Bajic M; Maher KA; Deal RB
    Methods Mol Biol; 2018; 1675():183-201. PubMed ID: 29052193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of nuclei for use in genome-wide DNase hypersensitivity assays to probe chromatin structure.
    Ling G; Waxman DJ
    Methods Mol Biol; 2013; 977():13-9. PubMed ID: 23436350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq.
    Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide mapping of DNase I hypersensitive sites reveals chromatin accessibility changes in Arabidopsis euchromatin and heterochromatin regions under extended darkness.
    Liu Y; Zhang W; Zhang K; You Q; Yan H; Jiao Y; Jiang J; Xu W; Su Z
    Sci Rep; 2017 Jun; 7(1):4093. PubMed ID: 28642500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals.
    Chen A; Chen D; Chen Y
    Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.