These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26339316)

  • 1. High-throughput sorting of drops in microfluidic chips using electric capacitance.
    Pit AM; de Ruiter R; Kumar A; Wijnperlé D; Duits MH; Mugele F
    Biomicrofluidics; 2015 Jul; 9(4):044116. PubMed ID: 26339316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic potential wells for on-demand drop manipulation in microchannels.
    de Ruiter R; Pit AM; de Oliveira VM; Duits MH; van den Ende D; Mugele F
    Lab Chip; 2014 Mar; 14(5):883-91. PubMed ID: 24394887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actuation of digital micro drops by electrowetting on open microfluidic chips fabricated in photolithography.
    Ko H; Lee JS; Jung CH; Choi JH; Kwon OS; Shin K
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5894-7. PubMed ID: 25936023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affordable Fabrication of Conductive Electrodes and Dielectric Films for a Paper-based Digital Microfluidic Chip.
    Soum V; Kim Y; Park S; Chuong M; Ryu SR; Lee SH; Tanev G; Madsen J; Kwon OS; Shin K
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30736440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forces between oil drops in polymer-surfactant systems: Linking direct force measurements to microfluidic observations.
    Jamieson EJ; Fewkes CJ; Berry JD; Dagastine RR
    J Colloid Interface Sci; 2019 May; 544():130-143. PubMed ID: 30831547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and deformation of droplets in a microdevice using dielectrophoresis.
    Singh P; Aubry N
    Electrophoresis; 2007 Feb; 28(4):644-57. PubMed ID: 17304498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid switching and durable on-chip spark-cavitation-bubble cell sorter.
    Jiao Z; Han Y; Zhao J; Chao Z; Tárnok A; You Z
    Microsyst Nanoeng; 2022; 8():52. PubMed ID: 35600222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spark-generated microbubble cell sorter for microfluidic flow cytometry.
    Zhao J; You Z
    Cytometry A; 2018 Feb; 93(2):222-231. PubMed ID: 29346713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-selective sliding of sessile drops on a slightly inclined plane using low-frequency AC electrowetting.
    Hong J; Lee SJ; Koo BC; Suh YK; Kang KH
    Langmuir; 2012 Apr; 28(15):6307-12. PubMed ID: 22439770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells.
    Chabert M; Viovy JL
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3191-6. PubMed ID: 18316742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle-covered drops in electric fields: drop deformation and surface particle organization.
    Mikkelsen A; Khobaib K; Eriksen FK; Måløy KJ; Rozynek Z
    Soft Matter; 2018 Jul; 14(26):5442-5451. PubMed ID: 29901062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer.
    Gu H; Duits MH; Mugele F
    Lab Chip; 2010 Jun; 10(12):1550-6. PubMed ID: 20517557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breakup of a leaky dielectric drop in a uniform electric field.
    Dong Q; Sau A
    Phys Rev E; 2019 Apr; 99(4-1):043106. PubMed ID: 31108624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency Dependence of Low-Voltage Electrowetting Investigated by Impedance Spectroscopy.
    Li YJ; Cahill BP
    Langmuir; 2017 Nov; 33(45):13139-13147. PubMed ID: 29041777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.
    Brassard D; Malic L; Normandin F; Tabrizian M; Veres T
    Lab Chip; 2008 Aug; 8(8):1342-9. PubMed ID: 18651077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrothermally driven flows in ac electrowetting.
    García-Sánchez P; Ramos A; Mugele F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):015303. PubMed ID: 20365425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.
    Xu CX; Yin XF
    J Chromatogr A; 2011 Feb; 1218(5):726-32. PubMed ID: 21185567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.