These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26339632)

  • 21. Optimization of β-mannanase production by Bacillus subtilis US191 using economical agricultural substrates.
    Blibech M; Farhat-Khemakhem A; Kriaa M; Aslouj R; Boukhris I; Alghamdi OA; Chouayekh H
    Biotechnol Prog; 2020 Jul; 36(4):e2989. PubMed ID: 32134202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate selectivity of the sublancin S-glycosyltransferase.
    Wang H; van der Donk WA
    J Am Chem Soc; 2011 Oct; 133(41):16394-7. PubMed ID: 21910430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology.
    Mizumoto S; Shoda M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):101-8. PubMed ID: 17476498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology.
    Wang Q; Hou Y; Xu Z; Miao J; Li G
    Bioresour Technol; 2008 Apr; 99(6):1926-31. PubMed ID: 17499500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prevention of Cyclophosphamide-Induced Immunosuppression in Mice with the Antimicrobial Peptide Sublancin.
    Wang S; Huang S; Ye Q; Zeng X; Yu H; Qi D; Qiao S
    J Immunol Res; 2018; 2018():4353580. PubMed ID: 29854837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.
    Singh S; Bajaj BK
    Prep Biochem Biotechnol; 2016 Oct; 46(7):717-24. PubMed ID: 26760481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs.
    Wu QL; Chen T; Gan Y; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):783-94. PubMed ID: 17576552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigations into the Mechanism of Action of Sublancin.
    Wu C; Biswas S; Garcia De Gonzalo CV; van der Donk WA
    ACS Infect Dis; 2019 Mar; 5(3):454-459. PubMed ID: 30582697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of phenazine-1-carboxylic acid production by a gacA/qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology.
    Zhou Q; Su J; Jiang H; Huang X; Xu Y
    Appl Microbiol Biotechnol; 2010 May; 86(6):1761-73. PubMed ID: 20155354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of the production of organic solvent-stable protease by Bacillus sphaericus DS11 with response surface methodology.
    Liu S; Fang Y; Lv M; Wang S; Chen L
    Bioresour Technol; 2010 Oct; 101(20):7924-9. PubMed ID: 20542687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures.
    Wu CH; Chou CC
    J Agric Food Chem; 2009 Nov; 57(22):10695-700. PubMed ID: 19919117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medium optimization by response surface methodology for poly-gamma-glutamic acid production using dairy manure as the basis of a solid substrate.
    Xiong C; Shouwen C; Ming S; Ziniu Y
    Appl Microbiol Biotechnol; 2005 Dec; 69(4):390-6. PubMed ID: 15846485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate).
    Ashipala OK; He Q
    Bioresour Technol; 2008 Jul; 99(10):4112-9. PubMed ID: 17983741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The large mechanosensitive channel MscL determines bacterial susceptibility to the bacteriocin sublancin 168.
    Kouwen TR; Trip EN; Denham EL; Sibbald MJ; Dubois JY; van Dijl JM
    Antimicrob Agents Chemother; 2009 Nov; 53(11):4702-11. PubMed ID: 19738010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of fermentation conditions for production of neutral metalloprotease by
    He F; Chao J; Yang D; Zhang X; Yang C; Xu Z; Jiewei T; Yongqiang T
    Prep Biochem Biotechnol; 2022; 52(7):789-799. PubMed ID: 34747342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q.
    Yuan LL; Li YQ; Wang Y; Zhang XH; Xu YQ
    J Biosci Bioeng; 2008 Mar; 105(3):232-7. PubMed ID: 18397774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential expression of a prophage-encoded glycocin and its immunity protein suggests a mutualistic strategy of a phage and its host.
    Denham EL; Piersma S; Rinket M; Reilman E; de Goffau MC; van Dijl JM
    Sci Rep; 2019 Feb; 9(1):2845. PubMed ID: 30808982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of
    Norizan NABM; Halim M; Tan JS; Abbasiliasi S; Mat Sahri M; Othman F; Ariff AB
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32752106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose.
    Wu R; Chen G; Pan S; Zeng J; Liang Z
    Sci Rep; 2019 May; 9(1):6824. PubMed ID: 31048760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Media optimization for the novel antimicrobial peptide by Bacillus sp. fmbJ224].
    Shen J; Lu ZX; Bie XM; Lü FX; Huang XQ
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):609-14. PubMed ID: 16176101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.