These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26339642)

  • 1. Differential Expression Analysis in RNA-Seq by a Naive Bayes Classifier with Local Normalization.
    Dou Y; Guo X; Yuan L; Holding DR; Zhang C
    Biomed Res Int; 2015; 2015():789516. PubMed ID: 26339642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GC-content normalization for RNA-Seq data.
    Risso D; Schwartz K; Sherlock G; Dudoit S
    BMC Bioinformatics; 2011 Dec; 12():480. PubMed ID: 22177264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCnorm: robust normalization of single-cell RNA-seq data.
    Bacher R; Chu LF; Leng N; Gasch AP; Thomson JA; Stewart RM; Newton M; Kendziorski C
    Nat Methods; 2017 Jun; 14(6):584-586. PubMed ID: 28418000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salmon provides fast and bias-aware quantification of transcript expression.
    Patro R; Duggal G; Love MI; Irizarry RA; Kingsford C
    Nat Methods; 2017 Apr; 14(4):417-419. PubMed ID: 28263959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Count ratio model reveals bias affecting NGS fold changes.
    Erhard F; Zimmer R
    Nucleic Acids Res; 2015 Nov; 43(20):e136. PubMed ID: 26160885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.
    Dong K; Zhao H; Tong T; Wan X
    BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies.
    Li X; Cooper NGF; O'Toole TE; Rouchka EC
    BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data.
    Li P; Piao Y; Shon HS; Ryu KH
    BMC Bioinformatics; 2015 Oct; 16():347. PubMed ID: 26511205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diminishing returns in next-generation sequencing (NGS) transcriptome data.
    Lei R; Ye K; Gu Z; Sun X
    Gene; 2015 Feb; 557(1):82-7. PubMed ID: 25497830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster.
    Lin Y; Golovnina K; Chen ZX; Lee HN; Negron YL; Sultana H; Oliver B; Harbison ST
    BMC Genomics; 2016 Jan; 17():28. PubMed ID: 26732976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.
    Zhao S; Xi L; Quan J; Xi H; Zhang Y; von Schack D; Vincent M; Zhang B
    BMC Genomics; 2016 Jan; 17():39. PubMed ID: 26747388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data.
    Yoon S; Nam D
    BMC Genomics; 2017 May; 18(1):408. PubMed ID: 28545404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.
    Liao W; Jordaan G; Nham P; Phan RT; Pelegrini M; Sharma S
    BMC Cancer; 2015 Oct; 15():714. PubMed ID: 26474785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates.
    Gu X
    Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression analysis on RNA-Seq count data based on penalized matrix decomposition.
    Liu JX; Gao YL; Xu Y; Zheng CH; You J
    IEEE Trans Nanobioscience; 2014 Mar; 13(1):12-8. PubMed ID: 24594510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. aFold - using polynomial uncertainty modelling for differential gene expression estimation from RNA sequencing data.
    Yang W; Rosenstiel P; Schulenburg H
    BMC Genomics; 2019 May; 20(1):364. PubMed ID: 31077153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local and global factors affecting RNA sequencing analysis.
    Sendler E; Johnson GD; Krawetz SA
    Anal Biochem; 2011 Dec; 419(2):317-22. PubMed ID: 21889483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.
    Li W; Turner A; Aggarwal P; Matter A; Storvick E; Arnett DK; Broeckel U
    BMC Genomics; 2015 Dec; 16():1069. PubMed ID: 26673413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A naive Bayes algorithm for tissue origin diagnosis (TOD-Bayes) of synchronous multifocal tumors in the hepatobiliary and pancreatic system.
    Jiang W; Shen Y; Ding Y; Ye C; Zheng Y; Zhao P; Liu L; Tong Z; Zhou L; Sun S; Zhang X; Teng L; Timko MP; Fan L; Fang W
    Int J Cancer; 2018 Jan; 142(2):357-368. PubMed ID: 28921531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.