These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 26339717)

  • 1. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?
    Görlach A; Dimova EY; Petry A; Martínez-Ruiz A; Hernansanz-Agustín P; Rolo AP; Palmeira CM; Kietzmann T
    Redox Biol; 2015 Dec; 6():372-385. PubMed ID: 26339717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation of FoxO transcription factors.
    Klotz LO; Sánchez-Ramos C; Prieto-Arroyo I; Urbánek P; Steinbrenner H; Monsalve M
    Redox Biol; 2015 Dec; 6():51-72. PubMed ID: 26184557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased obesity resistance and insulin sensitivity in mice lacking the isocitrate dehydrogenase 2 gene.
    Lee SJ; Kim SH; Park KM; Lee JH; Park JW
    Free Radic Biol Med; 2016 Oct; 99():179-188. PubMed ID: 27519270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress.
    Sindhu S; Akhter N; Kochumon S; Thomas R; Wilson A; Shenouda S; Tuomilehto J; Ahmad R
    Cell Physiol Biochem; 2018; 45(2):572-590. PubMed ID: 29428931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis.
    Hseu YC; Senthil Kumar KJ; Chen CS; Cho HJ; Lin SW; Shen PC; Lin CW; Lu FJ; Yang HL
    Toxicol Appl Pharmacol; 2014 Jan; 274(2):249-62. PubMed ID: 24239652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.
    Tretter L; Patocs A; Chinopoulos C
    Biochim Biophys Acta; 2016 Aug; 1857(8):1086-1101. PubMed ID: 26971832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS.
    Zepeda AB; Pessoa A; Castillo RL; Figueroa CA; Pulgar VM; Farías JG
    Cell Biochem Funct; 2013 Aug; 31(6):451-9. PubMed ID: 23760768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival.
    García-Bermúdez J; Cuezva JM
    Biochim Biophys Acta; 2016 Aug; 1857(8):1167-1182. PubMed ID: 26876430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE-/- Mice through the ROS/MAPK/NF-κB Pathway.
    Xu ZR; Li JY; Dong XW; Tan ZJ; Wu WZ; Xie QM; Yang YM
    Nutrients; 2015 Aug; 7(8):7085-105. PubMed ID: 26305254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.
    Yu J; Lu Y; Li Y; Xiao L; Xing Y; Li Y; Wu L
    J Pharm Pharmacol; 2015 Sep; 67(9):1240-50. PubMed ID: 25880347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: Involvement of MAPKs, NF-kappaB, and HIF-1alpha.
    Lee SH; Lee YJ; Han HJ
    J Cell Physiol; 2010 Mar; 222(3):574-85. PubMed ID: 19950212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and hypoxia: implications for plasminogen activator inhibitor-1 expression.
    Dimova EY; Samoylenko A; Kietzmann T
    Antioxid Redox Signal; 2004 Aug; 6(4):777-91. PubMed ID: 15242559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia and adipose tissue function and dysfunction in obesity.
    Trayhurn P
    Physiol Rev; 2013 Jan; 93(1):1-21. PubMed ID: 23303904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Of the renin-angiotensin system and reactive oxygen species Type 2 diabetes and angiotensin II inhibition.
    Leiter LA; Lewanczuk RZ
    Am J Hypertens; 2005 Jan; 18(1):121-8. PubMed ID: 15691626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen, oxidative stress, hypoxia, and heart failure.
    Giordano FJ
    J Clin Invest; 2005 Mar; 115(3):500-8. PubMed ID: 15765131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.
    Kaneto H; Katakami N; Matsuhisa M; Matsuoka TA
    Mediators Inflamm; 2010; 2010():453892. PubMed ID: 20182627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions.
    Li L; Yang X
    Oxid Med Cell Longev; 2018; 2018():7580707. PubMed ID: 29849912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders.
    Kauppinen A; Suuronen T; Ojala J; Kaarniranta K; Salminen A
    Cell Signal; 2013 Oct; 25(10):1939-48. PubMed ID: 23770291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention.
    Kaulmann A; Bohn T
    Nutr Res; 2014 Nov; 34(11):907-29. PubMed ID: 25134454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.