BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 26339863)

  • 1. GIAO C-H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward.
    Zanardi MM; Sarotti AM
    J Org Chem; 2015 Oct; 80(19):9371-8. PubMed ID: 26339863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments.
    Sarotti AM
    Org Biomol Chem; 2013 Aug; 11(29):4847-59. PubMed ID: 23779148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    Balabin RM; Lomakina EI
    Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical pattern recognition approach for determining cellular viability and lineage phenotype in cultured cells and murine bone marrow.
    Quinn J; Fisher PW; Capocasale RJ; Achuthanandam R; Kam M; Bugelski PJ; Hrebien L
    Cytometry A; 2007 Aug; 71(8):612-24. PubMed ID: 17542025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty in the output of artificial neural networks.
    Jiang Y
    IEEE Trans Med Imaging; 2003 Jul; 22(7):913-21. PubMed ID: 12906245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-based algorithm for optimizing artificial neural networks.
    Tzyy-Chyang Lu ; Gwo-Ruey Yu ; Jyh-Ching Juang
    IEEE Trans Neural Netw Learn Syst; 2013 Aug; 24(8):1266-78. PubMed ID: 24808566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training artificial neural networks directly on the concordance index for censored data using genetic algorithms.
    Kalderstam J; Edén P; Bendahl PO; Strand C; Fernö M; Ohlsson M
    Artif Intell Med; 2013 Jun; 58(2):125-32. PubMed ID: 23582884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.
    Hart CE; Mjolsness E; Wold BJ
    PLoS Comput Biol; 2006 Dec; 2(12):e169. PubMed ID: 17194216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of artificial neural networks in the classification of primary oesophageal dysmotility.
    Santos R; Haack HG; Maddalena D; Hansen RD; Kellow JE
    Scand J Gastroenterol; 2006 Mar; 41(3):257-63. PubMed ID: 16497611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-hidden-layer feed-forward quantum neural network based on Grover learning.
    Liu CY; Chen C; Chang CT; Shih LM
    Neural Netw; 2013 Sep; 45():144-50. PubMed ID: 23545155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance.
    Mjalli FS; Al-Asheh S; Alfadala HE
    J Environ Manage; 2007 May; 83(3):329-38. PubMed ID: 16806660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved differentiation between Churg-Strauss syndrome and Wegener's granulomatosis by an artificial neural network.
    Schmitt WH; Linder R; Reinhold-Keller E; Gross WL
    Arthritis Rheum; 2001 Aug; 44(8):1887-96. PubMed ID: 11508442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.
    Le HM; Dinh TS; Le HV
    J Phys Chem A; 2011 Oct; 115(40):10862-70. PubMed ID: 21888438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid phenotypic characterization of Salmonella enterica strains by pyrolysis metastable atom bombardment mass spectrometry with multivariate statistical and artificial neural network pattern recognition.
    Wilkes JG; Rushing L; Nayak R; Buzatu DA; Sutherland JB
    J Microbiol Methods; 2005 Jun; 61(3):321-34. PubMed ID: 15767008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting survival in patients with brain metastases treated with radiosurgery using artificial neural networks.
    Oermann EK; Kress MA; Collins BT; Collins SP; Morris D; Ahalt SC; Ewend MG
    Neurosurgery; 2013 Jun; 72(6):944-51; discussion 952. PubMed ID: 23467250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Neural Networks: an overview and their use in the analysis of the AMPHORA-3 dataset.
    Buscema PM; Massini G; Maurelli G
    Subst Use Misuse; 2014 Oct; 49(12):1555-68. PubMed ID: 25026388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial neural network analysis of hydrocarbon profiles for the ageing of Lucilia sericata for post mortem interval estimation.
    Butcher JB; Moore HE; Day CR; Adam CD; Drijfhout FP
    Forensic Sci Int; 2013 Oct; 232(1-3):25-31. PubMed ID: 24053861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow injection analysis of fluoride: optimization of experimental conditions and non-linear calibration using artificial neural networks.
    Zhou Y; Yan A; Xu H; Wang K; Chen X; Hu Z
    Analyst; 2000 Dec; 125(12):2376-80. PubMed ID: 11219085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.