These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 26339932)

  • 21. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroelectrochemical analyses of electroactive microbial biofilms.
    Millo D
    Biochem Soc Trans; 2012 Dec; 40(6):1284-90. PubMed ID: 23176469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Planktonic Relationship Between Fluid-Like Electrodes and Bacteria: Wiring in Motion.
    Tejedor-Sanz S; Quejigo JR; Berná A; Esteve-Núñez A
    ChemSusChem; 2017 Feb; 10(4):693-700. PubMed ID: 27860438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system.
    Kashima H; Regan JM
    Environ Sci Technol; 2015 Mar; 49(5):3195-202. PubMed ID: 25622928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms.
    Marsili E; Rollefson JB; Baron DB; Hozalski RM; Bond DR
    Appl Environ Microbiol; 2008 Dec; 74(23):7329-37. PubMed ID: 18849456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial-type skeleton induced Geobacter enrichment and tailored bio-capacitance of electroactive bioanode for efficient electron transfer in microbial fuel cells.
    Li C; Feng Y; Liang D; Zhang L; Tian Y; Yadav RS; He W
    Sci Total Environ; 2022 May; 821():153123. PubMed ID: 35051486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode.
    Jain A; Zhang X; Pastorella G; Connolly JO; Barry N; Woolley R; Krishnamurthy S; Marsili E
    Bioelectrochemistry; 2012 Oct; 87():28-32. PubMed ID: 22281091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron Flow Shifts from Anode Respiration to Nitrate Reduction During Electroactive Biofilm Thickening.
    Zhou L; Jiang Y; Wan Y; Liu X; Zhou H; Li W; Li N; Wang X
    Environ Sci Technol; 2020 Aug; 54(15):9593-9600. PubMed ID: 32667788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemically active biofilms: facts and fiction. A review.
    Babauta J; Renslow R; Lewandowski Z; Beyenal H
    Biofouling; 2012; 28(8):789-812. PubMed ID: 22856464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential.
    Carmona-Martínez AA; Harnisch F; Kuhlicke U; Neu TR; Schröder U
    Bioelectrochemistry; 2013 Oct; 93():23-9. PubMed ID: 22658509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems.
    Guo K; Freguia S; Dennis PG; Chen X; Donose BC; Keller J; Gooding JJ; Rabaey K
    Environ Sci Technol; 2013 Jul; 47(13):7563-70. PubMed ID: 23745742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm.
    Song TS; Zhang H; Liu H; Zhang D; Wang H; Yang Y; Yuan H; Xie J
    Bioresour Technol; 2017 Nov; 243():573-582. PubMed ID: 28704738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms.
    Sun D; Cheng S; Wang A; Li F; Logan BE; Cen K
    Environ Sci Technol; 2015 Apr; 49(8):5227-35. PubMed ID: 25810405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry.
    Katuri KP; Kavanagh P; Rengaraj S; Leech D
    Chem Commun (Camb); 2010 Jul; 46(26):4758-60. PubMed ID: 20485847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On electron transport through Geobacter biofilms.
    Bond DR; Strycharz-Glaven SM; Tender LM; Torres CI
    ChemSusChem; 2012 Jun; 5(6):1099-105. PubMed ID: 22615023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.
    Cercado B; Cházaro-Ruiz LF; Ruiz V; López-Prieto Ide J; Buitrón G; Razo-Flores E
    Biosens Bioelectron; 2013 Dec; 50():373-81. PubMed ID: 23891866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm.
    Zhuang Z; Yang G; Zhuang L
    Sci Total Environ; 2022 Feb; 806(Pt 3):150713. PubMed ID: 34606863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer.
    Yu L; Yuan Y; Rensing C; Zhou S
    Biosens Bioelectron; 2018 May; 106():21-28. PubMed ID: 29414084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems.
    Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y
    Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.