BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 26339933)

  • 1. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition.
    Hou T; Zhang L; Sun X; Li F
    Biosens Bioelectron; 2016 Jan; 75():359-64. PubMed ID: 26339933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electropolymerization-Induced Positively Charged Phenothiazine Polymer Photoelectrode for Highly Sensitive Photoelectrochemical Biosensing.
    Wang J; Lv W; Wu J; Li H; Li F
    Anal Chem; 2019 Nov; 91(21):13831-13837. PubMed ID: 31560517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO
    Wang Y; Ge S; Zhang L; Yu J; Yan M; Huang J
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):859-865. PubMed ID: 27818042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching.
    Wang Y; Gao C; Ge S; Yu J; Yan M
    Biosens Bioelectron; 2016 Nov; 85():205-211. PubMed ID: 27179135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical biosensor using enzyme-catalyzed in situ propagation of CdS quantum dots on graphene oxide.
    Zeng X; Tu W; Li J; Bao J; Dai Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16197-203. PubMed ID: 25154012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiocholine mediated stabilization of in situ produced CdS quantum dots: application for the detection of acetylcholinesterase activity and inhibitors.
    Garai-Ibabe G; Saa L; Pavlov V
    Analyst; 2014 Jan; 139(1):280-4. PubMed ID: 24225492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides.
    Li X; Zheng Z; Liu X; Zhao S; Liu S
    Biosens Bioelectron; 2015 Feb; 64():1-5. PubMed ID: 25173731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-lived charge carriers in Mn-doped CdS quantum dots for photoelectrochemical cytosensing.
    Wu P; Pan JB; Li XL; Hou X; Xu JJ; Chen HY
    Chemistry; 2015 Mar; 21(13):5129-35. PubMed ID: 25678041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.
    Zhang L; Sun Y; Liang YY; He JP; Zhao WW; Xu JJ; Chen HY
    Biosens Bioelectron; 2016 Nov; 85():930-934. PubMed ID: 27315518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: a general and efficient approach for new photoelectrochemical immunoassay.
    Zhao WW; Ma ZY; Yan DY; Xu JJ; Chen HY
    Anal Chem; 2012 Dec; 84(24):10518-21. PubMed ID: 23198754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A signal-off sandwich photoelectrochemical immunosensor using TiO2 coupled with CdS as the photoactive matrix and copper (II) ion as inhibitor.
    Liu Y; Li R; Gao P; Zhang Y; Ma H; Yang J; Du B; Wei Q
    Biosens Bioelectron; 2015 Mar; 65():97-102. PubMed ID: 25461144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective detection of trace amount of Cu2+ using semiconductor nanoparticles in photoelectrochemical analysis.
    Wang GL; Xu JJ; Chen HY
    Nanoscale; 2010 Jul; 2(7):1112-4. PubMed ID: 20648335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification.
    Wang GL; Shu JX; Dong YM; Wu XM; Li ZJ
    Biosens Bioelectron; 2015 Apr; 66():283-9. PubMed ID: 25437365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photoelectrochemical strategy for ultrasensitive DNA detection based on two different sizes of CdTe quantum dots cosensitized TiO2/CdS:Mn hybrid structure.
    Fan GC; Han L; Zhang JR; Zhu JJ
    Anal Chem; 2014 Nov; 86(21):10877-84. PubMed ID: 25294102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-powered photoelectrochemical biosensor for H
    Çakıroğlu B; Özacar M
    Biosens Bioelectron; 2019 Sep; 141():111385. PubMed ID: 31185417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free photoelectrochemical immunoassay for CEA detection based on CdS sensitized WO
    Han Q; Wang R; Xing B; Zhang T; Khan MS; Wu D; Wei Q
    Biosens Bioelectron; 2018 Jan; 99():493-499. PubMed ID: 28823974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic-inorganic nanoparticles molecularly imprinted photoelectrochemical sensor for α-solanine based on p-type polymer dots and n-CdS heterojunction.
    Mao L; Gao M; Xue X; Yao L; Wen W; Zhang X; Wang S
    Anal Chim Acta; 2019 Jun; 1059():94-102. PubMed ID: 30876637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO
    Cai G; Yu Z; Ren R; Tang D
    ACS Sens; 2018 Mar; 3(3):632-639. PubMed ID: 29465232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the Photoelectrochemical Activity of Hexametaphosphate-Capped CdS Quantum Dots by Ca
    Chen Y; Zhou M; Yang J; Tan Y; Deng W; Xie Q
    Anal Chem; 2021 Oct; 93(41):13783-13790. PubMed ID: 34606246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical immunoassay of lipoprotein-associated phospholipase A
    Zhang DP; Wang LE; Liu XY; Luo ZH; Zheng L; He Y; Zhang B
    Anal Bioanal Chem; 2018 Nov; 410(29):7645-7653. PubMed ID: 30283999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.