These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Aging power spectrum of membrane protein transport and other subordinated random walks. Fox ZR; Barkai E; Krapf D Nat Commun; 2021 Oct; 12(1):6162. PubMed ID: 34697310 [TBL] [Abstract][Full Text] [Related]
5. Power spectra for both interrupted and perennial aging processes. Lukovic M; Grigolini P J Chem Phys; 2008 Nov; 129(18):184102. PubMed ID: 19045381 [TBL] [Abstract][Full Text] [Related]
7. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482 [TBL] [Abstract][Full Text] [Related]
8. Aging and nonergodicity beyond the Khinchin theorem. Burov S; Metzler R; Barkai E Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13228-33. PubMed ID: 20624984 [TBL] [Abstract][Full Text] [Related]
9. Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes. Margolin G; Barkai E J Chem Phys; 2004 Jul; 121(3):1566-77. PubMed ID: 15260705 [TBL] [Abstract][Full Text] [Related]
10. Generalization of the Khinchin theorem to Lévy flights. Weron A; Magdziarz M Phys Rev Lett; 2010 Dec; 105(26):260603. PubMed ID: 21231638 [TBL] [Abstract][Full Text] [Related]
11. Theory of relaxation dynamics for anomalous diffusion processes in harmonic potential. Wang X; Chen Y; Deng W Phys Rev E; 2020 Apr; 101(4-1):042105. PubMed ID: 32422812 [TBL] [Abstract][Full Text] [Related]
12. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
13. Superaging correlation function and ergodicity breaking for Brownian motion in logarithmic potentials. Dechant A; Lutz E; Kessler DA; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051124. PubMed ID: 23004720 [TBL] [Abstract][Full Text] [Related]
14. Erratum: Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise [Phys. Rev. E 94, 052130 (2016)]. Leibovich N; Dechant A; Lutz E; Barkai E Phys Rev E; 2017 Nov; 96(5-2):059902. PubMed ID: 29347801 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic analysis in molecular simulations with discretized Wiener-Khinchin theorem for Fourier-Laplace transformation. Koyama A; Nicholson DA; Andreev M; Rutledge GC; Fukao K; Yamamoto T Phys Rev E; 2020 Dec; 102(6-1):063302. PubMed ID: 33465994 [TBL] [Abstract][Full Text] [Related]
16. Manifestation of random first-order transition theory in Wigner glasses. Kang H; Kirkpatrick TR; Thirumalai D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042308. PubMed ID: 24229173 [TBL] [Abstract][Full Text] [Related]
17. Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion. Godec A; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012116. PubMed ID: 23944423 [TBL] [Abstract][Full Text] [Related]
18. Aging processes and scale dependence in soft glassy colloidal suspensions. Bellour M; Knaebel A; Harden JL; Lequeux F; Munch JP Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031405. PubMed ID: 12689065 [TBL] [Abstract][Full Text] [Related]
19. Transient aging in fractional Brownian and Langevin-equation motion. Kursawe J; Schulz J; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403 [TBL] [Abstract][Full Text] [Related]
20. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Jeon JH; Chechkin AV; Metzler R Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]