These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Corner transfer matrix renormalization group approach in the zoo of Archimedean lattices. Lukin IV; Sotnikov AG Phys Rev E; 2024 Apr; 109(4-2):045305. PubMed ID: 38755853 [TBL] [Abstract][Full Text] [Related]
26. Iterative solutions to the steady-state density matrix for optomechanical systems. Nation PD; Johansson JR; Blencowe MP; Rimberg AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013307. PubMed ID: 25679739 [TBL] [Abstract][Full Text] [Related]
27. Tensor renormalization group approach to two-dimensional classical lattice models. Levin M; Nave CP Phys Rev Lett; 2007 Sep; 99(12):120601. PubMed ID: 17930489 [TBL] [Abstract][Full Text] [Related]
28. Generalized Bose-Einstein condensation into multiple states in driven-dissipative systems. Vorberg D; Wustmann W; Ketzmerick R; Eckardt A Phys Rev Lett; 2013 Dec; 111(24):240405. PubMed ID: 24483633 [TBL] [Abstract][Full Text] [Related]
29. Quantum phases of the extended Bose-Hubbard hamiltonian: possibility of a supersolid state of cold atoms in optical lattices. Scarola VW; Das Sarma S Phys Rev Lett; 2005 Jul; 95(3):033003. PubMed ID: 16090740 [TBL] [Abstract][Full Text] [Related]
30. Fine Grained Tensor Network Methods. Schmoll P; Jahromi SS; Hörmann M; Mühlhauser M; Schmidt KP; Orús R Phys Rev Lett; 2020 May; 124(20):200603. PubMed ID: 32501041 [TBL] [Abstract][Full Text] [Related]
31. Exact relaxation in a class of nonequilibrium quantum lattice systems. Cramer M; Dawson CM; Eisert J; Osborne TJ Phys Rev Lett; 2008 Jan; 100(3):030602. PubMed ID: 18232957 [TBL] [Abstract][Full Text] [Related]
32. Electric-Field-Driven Resistive Switching in the Dissipative Hubbard Model. Li J; Aron C; Kotliar G; Han JE Phys Rev Lett; 2015 Jun; 114(22):226403. PubMed ID: 26196634 [TBL] [Abstract][Full Text] [Related]
33. Reference electronic structure calculations in one dimension. Wagner LO; Stoudenmire EM; Burke K; White SR Phys Chem Chem Phys; 2012 Jun; 14(24):8581-90. PubMed ID: 22596085 [TBL] [Abstract][Full Text] [Related]
34. Fast dynamics for atoms in optical lattices. Łącki M; Zakrzewski J Phys Rev Lett; 2013 Feb; 110(6):065301. PubMed ID: 23432268 [TBL] [Abstract][Full Text] [Related]
35. Quantum Manifestation of the Classical Bifurcation in the Driven Dissipative Bose-Hubbard Dimer. Muraev P; Maksimov D; Kolovsky A Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673258 [TBL] [Abstract][Full Text] [Related]
36. Exceptional points for photon pairs bound by nonlinear dissipation in cavity arrays. Lyubarov M; Poddubny A Opt Lett; 2018 Dec; 43(24):5917-5920. PubMed ID: 30547969 [TBL] [Abstract][Full Text] [Related]
37. The Lattice-Boltzmann method on optimal sampling lattices. Alim UR; Entezari A; Möller T IEEE Trans Vis Comput Graph; 2009; 15(4):630-41. PubMed ID: 19423887 [TBL] [Abstract][Full Text] [Related]
38. Renormalization group for treating 2D coupled arrays of continuum 1D systems. Konik RM; Adamov Y Phys Rev Lett; 2009 Mar; 102(9):097203. PubMed ID: 19392559 [TBL] [Abstract][Full Text] [Related]
39. Tangent Space Approach for Thermal Tensor Network Simulations of the 2D Hubbard Model. Li Q; Gao Y; He YY; Qi Y; Chen BB; Li W Phys Rev Lett; 2023 Jun; 130(22):226502. PubMed ID: 37327445 [TBL] [Abstract][Full Text] [Related]