These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 26340310)
21. Scalable Low-Band-Gap Sb Zhang L; Li Y; Li C; Chen Q; Zhen Z; Jiang X; Zhong M; Zhang F; Zhu H ACS Nano; 2017 Dec; 11(12):12753-12763. PubMed ID: 29165986 [TBL] [Abstract][Full Text] [Related]
22. Environmentally friendly Cu Wang K; Huang D; Yu L; Gu H; Ikeda S; Jiang F J Colloid Interface Sci; 2019 Feb; 536():9-16. PubMed ID: 30342410 [TBL] [Abstract][Full Text] [Related]
23. Graphene-CdS quantum dots-polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation. Wang M; Shang X; Yu X; Liu R; Xie Y; Zhao H; Cao H; Zhang G Phys Chem Chem Phys; 2014 Dec; 16(47):26016-23. PubMed ID: 25358848 [TBL] [Abstract][Full Text] [Related]
25. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO₂-ZnO Nanorod Film. Abd Samad NA; Lai CW; Lau KS; Abd Hamid SB Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774068 [TBL] [Abstract][Full Text] [Related]
26. CoSe Basu M; Zhang ZW; Chen CJ; Lu TH; Hu SF; Liu RS ACS Appl Mater Interfaces; 2016 Oct; 8(40):26690-26696. PubMed ID: 27635665 [TBL] [Abstract][Full Text] [Related]
27. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO Jun SE; Hong SP; Choi S; Kim C; Ji SG; Park IJ; Lee SA; Yang JW; Lee TH; Sohn W; Kim JY; Jang HW Small; 2021 Oct; 17(39):e2103457. PubMed ID: 34453489 [TBL] [Abstract][Full Text] [Related]
28. Improving the Back Surface Field on an Amorphous Silicon Carbide Thin-Film Photocathode for Solar Water Splitting. Perez-Rodriguez P; Cardenas-Morcoso D; Digdaya IA; Raventos AM; Procel P; Isabella O; Gimenez S; Zeman M; Smith WA; Smets AHM ChemSusChem; 2018 Jun; 11(11):1797-1804. PubMed ID: 29692002 [TBL] [Abstract][Full Text] [Related]
29. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Shi X; Choi IY; Zhang K; Kwon J; Kim DY; Lee JK; Oh SH; Kim JK; Park JH Nat Commun; 2014 Sep; 5():4775. PubMed ID: 25179126 [TBL] [Abstract][Full Text] [Related]
30. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production. Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678 [TBL] [Abstract][Full Text] [Related]
31. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Morales-Guio CG; Tilley SD; Vrubel H; Grätzel M; Hu X Nat Commun; 2014; 5():3059. PubMed ID: 24402352 [TBL] [Abstract][Full Text] [Related]
32. Rationally Designed Copper-Modified Polymeric Carbon Nitride as a Photocathode for Solar Water Splitting. Wang Z; Jin B; Zou G; Zhang K; Hu X; Park JH ChemSusChem; 2019 Feb; 12(4):866-872. PubMed ID: 30516031 [TBL] [Abstract][Full Text] [Related]
33. Epitaxial Bi2 FeCrO6 Multiferroic Thin Film as a New Visible Light Absorbing Photocathode Material. Li S; AlOtaibi B; Huang W; Mi Z; Serpone N; Nechache R; Rosei F Small; 2015 Aug; 11(32):4018-26. PubMed ID: 25988512 [TBL] [Abstract][Full Text] [Related]
34. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. Wang Z; Zong X; Gao Y; Han J; Xu Z; Li Z; Ding C; Wang S; Li C ACS Appl Mater Interfaces; 2017 Sep; 9(36):30696-30702. PubMed ID: 28832111 [TBL] [Abstract][Full Text] [Related]
36. Bi Moon S; Park J; Lee H; Yang JW; Yun J; Park YS; Lee J; Im H; Jang HW; Yang W; Moon J Adv Sci (Weinh); 2023 Feb; 10(6):e2206286. PubMed ID: 36646498 [TBL] [Abstract][Full Text] [Related]
37. Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells. Liao YK; Wang YC; Yen YT; Chen CH; Hsieh DH; Chen SC; Lee CY; Lai CC; Kuo WC; Juang JY; Wu KH; Cheng SJ; Lai CH; Lai FI; Kuo SY; Kuo HC; Chueh YL ACS Nano; 2013 Aug; 7(8):7318-29. PubMed ID: 23906340 [TBL] [Abstract][Full Text] [Related]
38. Data on the effect of CdS on the lateral collection length of charge carriers for Cu(In,Ga)Se Lee S; Jang J; Park JS; Oh YJ; Chung CH Data Brief; 2020 Apr; 29():105352. PubMed ID: 32181311 [TBL] [Abstract][Full Text] [Related]
39. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability. Wang R; Li X; Wang L; Zhao X; Yang G; Li A; Wu C; Shen Q; Zhou Y; Zou Z Nanoscale; 2018 Nov; 10(41):19621-19627. PubMed ID: 30325386 [TBL] [Abstract][Full Text] [Related]
40. Photoelectrochemical water reduction over wide gap (Ag,Cu)(In,Ga)S Septina W; Sugimoto M; Chao D; Shen Q; Nakatsuka S; Nose Y; Harada T; Ikeda S Phys Chem Chem Phys; 2017 May; 19(19):12502-12508. PubMed ID: 28470280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]