BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26340419)

  • 1. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.
    Islam MN; Jung HY; Park JH
    J Environ Manage; 2015 Nov; 163():262-9. PubMed ID: 26340419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization and reduction of bioavailability of lead in shooting range soil through hydrothermal treatment.
    Islam MN; Park JH
    J Environ Manage; 2017 Apr; 191():172-178. PubMed ID: 28092753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNT and RDX degradation and extraction from contaminated soil using subcritical water.
    Islam MN; Shin MS; Jo YT; Park JH
    Chemosphere; 2015 Jan; 119():1148-1152. PubMed ID: 25460755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.
    Islam MN; Nguyen XP; Jung HY; Park JH
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):179-85. PubMed ID: 26546228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of heavy metals in sewage sludge by using subcritical water technology.
    Shi W; Liu C; Ding D; Lei Z; Yang Y; Feng C; Zhang Z
    Bioresour Technol; 2013 Jun; 137():18-24. PubMed ID: 23570779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Impact of compounded chelants on removal of heavy metals and characteristics of morphologic change in soil from heavy metals contaminated sites].
    Yin X; Chen JJ; Lü C
    Huan Jing Ke Xue; 2014 Feb; 35(2):733-9. PubMed ID: 24812971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China.
    Pan Y; Li H
    Environ Manage; 2016 Apr; 57(4):879-93. PubMed ID: 26787014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment of heavy metals in soil of Tongnan District (Southwest China): evidence from multiple indices with high-spatial-resolution sampling.
    Ma Y; Jia Z; Li S
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20282-20290. PubMed ID: 28702916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of heavy metals from a contaminated soil using tartaric acid.
    Ke X; Li PJ; Zhou QX; Zhang Y; Sun TH
    J Environ Sci (China); 2006; 18(4):727-33. PubMed ID: 17078552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges.
    Gong H; Zhao L; Rui X; Hu J; Zhu N
    J Hazard Mater; 2022 Jun; 432():128668. PubMed ID: 35325861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar.
    Li J; Yu G; Xie S; Pan L; Li C; You F; Wang Y
    Sci Total Environ; 2018 Jul; 628-629():131-140. PubMed ID: 29428855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge.
    Li L; Xu ZR; Zhang C; Bao J; Dai X
    Bioresour Technol; 2012 Oct; 121():169-75. PubMed ID: 22858482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of heavy metals in two contaminated soils using a modified magnesium silicate stabilizer.
    Yuan X; Xiong T; Wang H; Wu Z; Jiang L; Zeng G; Li Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32562-32571. PubMed ID: 30242649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution, migration and potential risk of heavy metals in the Shima River catchment area, South China.
    Gao L; Chen J; Tang C; Ke Z; Wang J; Shimizu Y; Zhu A
    Environ Sci Process Impacts; 2015 Oct; 17(10):1769-82. PubMed ID: 26308469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of trace heavy metals dynamics during the interaction of aqueous solutions with the artificial OECD soil: Evaluation of the effect of soil organic matter content and colloidal mobilization.
    Pontoni L; van Hullebusch ED; Fabbricino M; Esposito G; Pirozzi F
    Chemosphere; 2016 Nov; 163():382-391. PubMed ID: 27565305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.
    Huang G; Su X; Rizwan MS; Zhu Y; Hu H
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16845-56. PubMed ID: 27197655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components.
    Li Q; Wang Y; Li Y; Li L; Tang M; Hu W; Chen L; Ai S
    Sci Total Environ; 2022 Jun; 825():153862. PubMed ID: 35176361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.
    Derakhshan Nejad Z; Jung MC; Kim KH
    Environ Geochem Health; 2018 Jun; 40(3):927-953. PubMed ID: 28447234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of biochar and zero valent iron on the bioavailability and potential toxicity of heavy metals in contaminated soil at the field scale.
    Li Q; Yin J; Wu L; Li S; Chen L
    Sci Total Environ; 2023 Nov; 897():165386. PubMed ID: 37423275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.